
Fast Multiparty Threshold ECDSA with Fast Trustless
Setup

Rosario Gennaro1 and Steven Goldfeder2

1 City University of New York
rosario@cs.ccny.cuny.edu

2 Princeton Universty§

goldfeder@cornell.edu

Abstract. A threshold signature scheme enables distributed signing among n players such
that any subgroup of size t + 1 can sign, whereas any group with t or fewer players cannot.
While there exist previous threshold schemes for the ECDSA signature scheme, we present
the first protocol that supports multiparty signatures for any t ≤ n with efficient, dealerless
key generation. Our protocol is faster than previous solutions and significantly reduces the
communication complexity as well. We prove our scheme secure against malicious adversaries
with a dishonest majority. We implemented our protocol, demonstrating its efficiency and
suitability to be deployed in practice.

1 Introduction

A threshold signature scheme enables n parties to share the power to issue digital signatures
under a single public key. A threshold t is specified such that any subset of t + 1 players can
jointly sign, but any smaller subset cannot. Generally, the goal is to produce signatures that are
compatible with an existing centralized signature scheme. In a threshold scheme the key generation
and signature algorithm are replaced by a communication protocol between the parties, but the
verification algorithm remains identical to the verification of a signature issued by a centralized
party.

In recent years there has been renewed attention to this topic, in particular to the threshold
generation of ECDSA signatures, mostly due to the use of ECDSA in Bitcoin and other cryptocur-
rencies. Indeed, a secure threshold signature schemes for ECDSA would be an effective counter-
measure to the constant theft of bitcoins due to the compromise of the secret signing key that
authorizes transactions. Securing Bitcoin is equivalent to securing these keys. Instead of storing
them in a single location, keys should be split and signing should be authorized by a threshold set
of computers. A breach of any one of these machines—or any number of machines less than the
threshold—will not allow the attacker to steal any money or glean any information about the key.

Before the advent of Bitcoin, the best ECDSA threshold signature scheme was the work by
Gennaro et al. [18], which has a considerable setback. To implement a security threshold of t
players (i.e. t or less players cannot sign) it is necessary to share the key among at least 2t + 1
players, and the participation of at least 2t+ 1 players is required to sign. This limitation rules out
an n-of-n sharing where all parties are required to sign. Furthermore, it requires setting up many
servers holding key shares, which may be costly and also makes the job of the attacker easier in
some way (as there are more servers that can be targeted and while the honest participants need
2t+ 1 players to sign, an attacker need only compromise t+ 1 servers to steal the key).

In an attempt to address these issues, Mackenzie and Reiter built a specialized scheme for
the 2-out-of-2 signature case (i.e. t = 1 and n = 2) [29], a case not covered by Gennaro et al.’s

This is a minor revision of our paper [16] that appeared at ACM CCS 2018.
§ Steven Goldfeder has since joined Cornell Tech/IC3

2 Rosario Gennaro and Steven Goldfeder

scheme. Recently much improved 2-out-of-2 schemes have been presented [12, 27]. However 2-out-
of-2 sharing is very limited and can’t express more flexible sharing policies that might be required
in certain applications.

Gennaro and others in [17] (improved in [4]) address the more general (t, n) case in the threshold
optimal setting, meaning n ≥ t+ 1 and that only t+ 1 players are needed to sign. However, their
scheme too has a setback in that the distributed key generation protocol is very costly.

Our Result: We present a new threshold-optimal protocol for ECDSA that improves in many
significant ways over [4, 17]. Our new protocol is faster and requires much less communication than
[4, 17]; it is also conceptually simpler and does not require a complicated distributed key generation
protocol (details of the comparison appear below).

In concurrent work that appeared in the same proceedings, Lindell et al. present a similar
protocol for multiparty threshold ECDSA with an efficient key generation [28].

1.1 Overview of our solution

Consider a “generic” DSA signature algorithm that works over any cyclic group G of prime order
q generated by an element g. It uses a hash function H defined from arbitrary strings into Zq, and
another hash function H ′ defined from G to Zq. The secret key is x chosen uniformly at random in
Zq, with a matching public key y = gx. To sign a message M , the signer computes m = H(M) ∈ Zq,
chooses k uniformly at random in Zq and computes R = gk

−1

in G and r = H ′(R) ∈ Zq. Then
she computes s = k(m + xr) mod q. The signature on M is the pair (r, s) which is verified by
computing

R′ = gms
−1 mod qyrs

−1 mod q in G

and accepting if H ′(R′) = r.
The technical complication with sharing DSA signatures comes from having to jointly compute

R (which requires raising g to the inverse of a secret value k) and to compute s which requires
multiplying two secret values k, x. As shown in [18], it is sufficient to show how to compute two
multiplications over secret values that are shared among the players. In [18] the values are shared
via Shamir’s secret sharing, i.e. as points on a polynomial of degree t with free term the secret.
The effect of multiplication is that the degree of the polynomial is doubled, which explains why
the [18] solution requires at least 2t+ 1 players to participate. To address this problem [29] uses a
multiplicative sharing of the secret key x as x = x1 · x2 (an approach taken also in [12, 27]) which
is however hard to generalize to t > 2.

A different approach was taken in [17]: the secret key x is encrypted under a public key en-
cryption scheme E, and it is the secret key of E that is shared among the players, effectively
providing a secret sharing of x. If E is an additively homomorphic encryption scheme (e.g. Pail-
lier’s [31]) they show that it is possible to construct a reasonably efficient protocol, with a few
troubling bottlenecks. The major one is that the protocol requires a joint generation of the public
key/secret key pair for the additively homomorphic encryption E. When E is instantiated using
Paillier, this requires the distributed generation of an RSA modulus. Although solutions are known
for this problem (e.g. [23]), they are far from scalable and efficient. To our knowledge the protocol
from [23] has never been implemented for the malicious multiparty case. The only benchmark we
are aware of for this protocol is that for the two-party semi-honest case it takes 15 minutes [27],
and we can extrapolate that it would take significantly longer in the multiparty malicious setting.
Moreover the signature generation protocols in [4, 17] require long messages and complicated ZK
proofs.

In this paper we take a different path inspired by the SPDZ approach to multiparty computation
[9]. Given two secrets a, b shared additively among the players, i.e. a = a1 + . . . + an and b =
b1 + . . . + bn where Pi holds ai, and bi, we want to generate an additive sharing of c = ab. We
note that ab =

∑
i,j aibj and therefore to get an additive sharing of ab, it is sufficient to obtain an

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 3

additive sharing of each individual term aibj . To that extent we use a 2-party protocol that allows
two parties to transform multiplicative shares of a secret to additive shares of the same secret. The
players engage in this protocol in a pairwise fashion to obtain an additive sharing of the product
ab.

Using this approach, we build a simple and elegant threshold ECDSA protocol for the general
multiparty setting. The players start with a (t, n) Shamir sharing of the secret key x. When t+ 1
players want to sign, they generate an additive sharing of two random values k =

∑
i ki and

γ =
∑
i γi and they use the above idea to compute additive sharings of the products δ = kγ (which

is reconstructed in the clear) and σ = kx =
∑
i wi (which is kept shared). By multiplying the local

shares of γ by the public value δ−1 the players end up with an additive sharing3 of k−1. The value
R is then easily computed in the exponent R =

∏
i g
γiδ
−1

. The value s is shared additively among
the players since each player holds si = kim+ wir and s =

∑
i si.

1.2 Avoid expensive ZK Proofs in case of a Malicious Adversary

Following [27] we make minimal use of ZK proofs to detect malicious behavior by the players.
Instead we take an “optimistic” approach and run the protocol assuming everybody is honest.

We then check the validity of the resulting signature to detect if there were players who deviated
from the protocol (if the signature does not verify then obviously at least one player did not follow
the instructions).

At that point, because we possibly have a dishonest majority among the players, there is no
guarantee that we can generate a correct signature so the protocol stops and aborts. This creates
a technical complication in the proof as we have to make sure that the values revealed by the good
players do not leak any valuable information, not only in the case of good executions, but also in
the case of aborting executions. As we will see, this will require us to “distributively” check that the
shares si reconstruct a valid signature before revealing them. This check is somewhat reminiscent
of the way Canetti and Goldwasser solve a similar problem in [7] to construct threshold CCA secure
encryption based on the Cramer-Shoup scheme.

Range Proofs. Even when using the signature verification step to detect cheating, we have to
run two relatively expensive ZK proofs during the share conversion protocol:

– a “range proof” that a value a encrypted under Paillier’s encryption scheme is “small”;
– a proof that a party knows x such that c = E(x) and y = gx where E is Paillier’s encryption

scheme.

As we discuss later, removing these ZK proofs creates an attack that leaks some information
about the DSA secret key (and the randomizer k used in each signature) shared among the servers.
We conjecture that this information is so limited that the protocol remains secure even without
them (see Section 5 for details).

1.3 Experimental Results

We implemented our scheme and found both the key generation and signing protocols to be very
efficient.

The key generation protocol is easy to implement and is quite fast (under a second for any
reasonable choice of parameters). This is in stark contrast to [4, 17] for which the key generation
protocol has never been implemented, and it is hard to estimate what the actual running time
would be.

Our signing protocol is also extremely efficient, and is a significant improvement over previous
works both in terms of data transferred and running time.

With the combination of an efficient key generation and signing protocol, our scheme is suitable
to be deployed in practice. We present full benchmarks and evaluations in Section 7.

3 This is the famous Bar-Ilan and Beaver inversion trick [1].

4 Rosario Gennaro and Steven Goldfeder

2 Preliminaries

Communication Model. We assume the existence of a broadcast channel as well as point-to-point
channels connecting every pair of players.

The Adversary. We assume a probabilistic polynomial time malicious adversary, who may de-
viate from the protocol description arbitrarily. The adversary can corrupt up to t players, and it
learns the private state of all corrupted players. As in previous threshold ECDSA schemes [4, 17,
18, 27], we limit ourselves to static corruptions, meaning the adversary must choose which players
to corrupt at the beginning of the protocol. There are standard techniques for converting a protocol
secure against static corruptions to secure against adaptive corruptions [6, 24], but these will incur
an overhead.

We assume a rushing adversary, meaning that the adversary gets to speak last in a given round
and, in particular, can choose his message after seeing the honest parties’ messages.

Following [4, 17] (but unlike [18]), we assume a dishonest majority, meaning t, the number
of players the adversary corrupts, can be up to n− 1. In this case, there is no guarantee that the
protocol will complete, and we therefore do not attempt to achieve robustness, or the ability to
complete the protocol even in the presence of some misbehaving participants.

2.1 Signature Schemes

A digital signature scheme S consists of three efficient algorithms:

– (sk, pk)←Key-Gen(1λ), the randomized key generation algorithm which takes as input the
security parameter and returns the private signing key sk and public verification key pk.

– σ←Sig(sk,m), the possibly randomized signing algorithm which takes as input the private
key sk and the message to be signed m and outputs a signature, σ. As the signature may be
randomized, there may be multiple valid signatures. We denote the set of valid signatures as
{Sig(sk,m)} and require that σ ∈ {Sig(sk,m)}.

– b ←Ver (pk,m, σ), the deterministic verification algorithm, which takes as input a public key
pk, a message m and a signature σ and outputs a bit b which equals 1 if and only if σ is a valid
signature on m under pk.

To prove a signature scheme secure, we recall the standard notion of existential unforgeability
against chosen message attacks (EU-CMA) as introduced in [22].

Definition 1 (Existential unforgeability). Consider a PPT adversary A who is given public
key pk output by Key-Gen and oracle access to the signing algorithm Sig(sk, ·) with which it can
receive signatures on adaptively chosen messages of its choosing. Let M be the set of messages
queried by A. A digital signature scheme S =(Key-Gen,Sig,Ver) is said to be existentially unforge-
able if there is no such PPT adversary A that can produce a signature on a message m /∈ M,
except with negligible probability in λ.

2.2 Threshold Signatures

Threshold secret sharing. A (t, n)−threshold secret sharing of a secret x consists of n shares
x1, . . . , xn such that an efficient algorithm exists that takes as input t + 1 of these shares and
outputs the secret, but t or fewer shares do not reveal any information about the secret.

Threshold signature schemes. Consider a signature scheme, S=(Key-Gen, Sig, Ver). A (t, n)-
threshold signature scheme T S for S enables distributing the signing among a group of n players,
P1, . . . , Pn such that any group of at least t + 1 of these players can jointly generate a signature,
whereas groups of size t or fewer cannot. More formally, T S consists of two protocols:

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 5

– Thresh-Key-Gen, the distributed key generation protocol, which takes as input the security
parameter 1λ. Each player Pi receives as output the public key pk as well as a private output
ski, which is Pi’s share of the private key. The values sk1, . . . , skn constitute a (t, n) threshold
secret sharing of the private key sk.

– Thresh-Sig, the distributed signing protocol which takes as public input a message m to be
signed as well as a private input ski from each player. It outputs a signature σ ∈ {Sig(sk,m)}.

Notice that the signature output by Thresh-Sig is a valid signature under Sig, the centralized
signing protocol. Thus we do not specify a threshold variant of the verification algorithm as we
will use the centralized verification algorithm, Ver.

In some applications, it may be acceptable to have a trusted dealer generate the private key
shares for each party. In this case, Thresh-Key-Gen would not be run.

Following [18, 19], we present a game-based definition of security analogous to EU-CMA.

Definition 2 (Unforgeable threshold signature scheme [18]). We say that a (t, n)-threshold
signature scheme T S =(Thresh-Key-Gen,Thresh-Sig) is unforgeable, if no malicious adversary who
corrupts at most t players can produce, with non-negligible (in λ) probability, the signature on any
new (i.e., previously unsigned) message m, given the view of the protocol Thresh-Key-Gen and of
the protocol Thresh-Sig on input messages m1, . . . ,mk which the adversary adaptively chose as well
as signatures on those messages.

This is a game-based definition of security which is analogous to the notion of existential unforge-
ability under chosen message attack as defined by Goldwasser, Micali, and Rivest [22]. Unlike in the
centralized EU-CMA definition, the adversary is additionally given the corrupted players’ views
of the key generation protocol as well as their views in the signing protocol for the messages it
chooses. A stronger simulation-based definition is also possible (see e.g. [17, 18, 27]). See Section
6.3 in which we show how to prove security of our protocol using this stronger simulation-based
definition.

2.3 Additively Homomorphic Encryption

Our protocol relies on an encryption scheme E that is additively homomorphic modulo a large
integer N . Let Epk(·) denote the encryption algorithm for E using public key pk. Given ciphertexts
c1 = Epk(a) and c2 = Epk(b), there is an efficiently computable function +E such that

c1 +E c2 = Epk(a+ b mod N)

The existence of a ciphertext addition operation also implies a scalar multiplication operation,
which we denote by ×E . Given an integer a ∈ N and a ciphertext c = Epk(m), then we have

a×E c = Epk(am mod N)

Informally, we say that E is semantically secure if for the probability distributions of the en-
cryptions of any two messages are computationally indistinguishable.

We instantiate our protocol using the additively homomorphic encryption scheme of Paillier
[31], and we recall the details here:

– Key-Gen: generate two large primes P,Q of equal length, and set N = PQ. Let λ(N) =
lcm(P −1, Q−1) be the Carmichael function of N . Finally choose Γ ∈ Z∗N2 such that its order
is a multiple of N . The public key is (N,Γ) and the secret key is λ(N).

– Encryption: to encrypt a message m ∈ ZN , select x ∈R Z∗N and return c = ΓmxN mod N2.
– Decryption: to decrypt a ciphertext c ∈ ZN2 , let L be a function defined over the set {u ∈
ZN2 : u = 1 mod N} computed as L(u) = (u− 1)/N . Then the decryption of c is computed as
L(cλ(N))/L(Γλ(N)) mod N .

6 Rosario Gennaro and Steven Goldfeder

– Homomorphic Properties: Given two ciphertexts c1, c2 ∈ ZN2 define c1 +E c2 = c1c2 mod N2. If
ci = E(mi) then c1+E c2 = E(m1+m2 mod N). Similarly, given a ciphertext c = E(m) ∈ ZN2

and a number a ∈ Zn we have that a×E c = ca mod N2 = E(am mod N).

The security of Paillier’s cryptosystem relies on the N -residuosity decisional assumption [31],
which informally says that it is infeasible to distinguish random N -residues from random group
elements in Z∗N2 .

2.4 Non-Malleable Equivocable Commitments

A trapdoor commitment scheme allows a sender to commit to a message with information-theoretic
privacy. i.e., given the transcript of the commitment phase the receiver, even with infinite computing
power, cannot guess the committed message better than at random. On the other hand when it
comes to opening the message, the sender is only computationally bound to the committed message.
Indeed the scheme admits a trapdoor whose knowledge allows to open a commitment in any possible
way (we will refer to this also as equivocate the commitment). This trapdoor should be hard to
compute efficiently.

Formally a (non-interactive) trapdoor commitment scheme consists of four algorithms KG, Com,
Ver, Equiv with the following properties:

– KG is the key generation algorithm, on input the security parameter it outputs a pair {pk,
tk} where pk is the public key associated with the commitment scheme, and tk is called the
trapdoor.

– Com is the commitment algorithm. On input pk and a message M it outputs [C(M), D(M)] =
Com(pk,M,R) where r are the coin tosses. C(M) is the commitment string, while D(M) is
the decommitment string which is kept secret until opening time.

– Ver is the verification algorithm. On input C,D and pk it either outputs a message M or ⊥.
– Equiv is the algorithm that opens a commitment in any possible way given the trapdoor in-

formation. It takes as input pk, strings M,R with [C(M), D(M)] = Com(pk,M,R), a message
M ′ 6= M and a string T . If T = tk then Equiv outputs D′ such that Ver(pk, C(M), D′) = M ′.

We note that if the sender refuses to open a commitment we can set D = ⊥ and Ver(pk, C,⊥) = ⊥.
Trapdoor commitments must satisfy the following properties

Correctness If [C(M), D(M)] = Com(pk,M,R) then
Ver(pk, C(M), D(M)) = M .

Information Theoretic Security For every message pair M,M ′ the distributions C(M) and
C(M ′) are statistically close.

Secure Binding We say that an adversary A wins if it outputs C,D,D′ such that Ver(pk, C,D) =
M , Ver(pk, C,D′) = M ′ and M 6= M ′. We require that for all efficient algorithms A, the
probability that A wins is negligible in the security parameter.

Such a commitment is non-malleable [13] if no adversaryA, given a commitment C to a messages
m, is able to produce another commitment C ′ such that after seeing the opening of C to m, A can
successfully decommit to a related message m′ (this is actually the notion of non-malleability with
respect to opening introduced in [10]).

The non-malleable commitment schemes in [10, 11] are not suitable for our purpose because
they are not “concurrently” secure, in the sense that the security definition holds only for t = 1
(i.e. the adversary sees only 1 commitment).

The stronger concurrent security notion of non-malleability for t > 1 is achieved by the schemes
presented in [8, 15, 30]), and any of them can be used in our threshold DSA scheme.

However in practice one can use any secure hash function H and define the commitment to
x as h = H(x, r), for a uniformly chosen r of length λ and assume that H behaves as a random
oracle. We use this efficient random oracle version in our implementation.

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 7

2.5 The Digital Signature Standard

The Digital Signature Algorithm (DSA) was proposed by Kravitz in 1991, and adopted by NIST
in 1994 as the Digital Signature Standard (DSS) [3, 26]. ECDSA, the elliptic curve variant of DSA,
has become quite popular in recent years, especially in cryptocurruencies.

All of our results in this paper apply to both the traditional DSA and ECDSA. We present our
results using the generic G-DSA notation from [17], which we recall here.

The Public Parameters consist of a cyclic group G of prime order q, a generator g for G, a hash
function H : {0, 1}∗ → Zq, and another hash function H ′ : G → Zq.

.

Key-Gen On input the security parameter, outputs a private key x chosen uniformly at random in Zq,
and a public key y = gx computed in G.

Sig On input an arbitrary message M ,
• compute m = H(M) ∈ Zq
• choose k ∈R Zq
• compute R = gk

−1

in G and r = H ′(R) ∈ Zq
• compute s = k(m+ xr) mod q
• output σ = (r, s)

Ver On input M,σ and y,
• check that r, s ∈ Zq
• compute R′ = gms

−1 mod qyrs
−1 mod q in G

• Accept (output 1) iff H ′(R′) = r.

The traditional DSA algorithm is obtained by choosing large primes p, q such that q|(p − 1)
and setting G to be the order q subgroup of Z∗p . In this case the multiplication operation in G is
multiplication modulo p. The function H ′ is defined as H ′(R) = R mod q.

The ECDSA scheme is obtained by choosing G as a group of points on an elliptic curve of
cardinality q. In this case the multiplication operation in G is the group operation over the curve.
The function H ′ is defined as H ′(R) = Rx mod q where Rx is the x-coordinate of the point R.

2.6 Feldman’s VSS Protocol

Recall that in Shamir’s scheme [35], to share a secret σ ∈ Zq, the dealer generates a random degree
t polynomial p(·) over Zq such that p(0) = σ. The secret shares are evaluations of the polynomial

p(x) = σ + a1x+ a2x
2 + · · ·+ atx

t mod q

Each player Pi receives a share σi = p(i) mod q.
In a verifiable secret sharing scheme, auxiliary information is published that allows players to

check that their shares are consistent and define a unique secret.
Feldman’s VSS is an extension of Shamir secret sharing in which the dealer also publishes

vi = gai in G for all i ∈ [1, t] and v0 = gσ in G.
Using this auxiliary information, each player Pi can check its share σi for consistency by veri-

fying:

gσi
?
=

t∏
j=0

vi
j

j in G

If the check does not hold for any player, it raises a complaint and the protocol terminates. Note
that this is different than the way Feldman VSS was originally presented as it assumed an honest
majority and could recover if a dishonest player raised a complaint. However, since we assume
dishonest majority in this paper, the protocol will abort if a complaint is raised.

While Feldman’s scheme does leak gσ, it can be shown via a simulation argument that nothing
else is leaked, but we omit the details here.

8 Rosario Gennaro and Steven Goldfeder

2.7 Assumptions

DDH. Let G be a cyclic group of prime order q, generated by g. The DDH Assumption states that
the following two distributions overG3 are computationally indistinguishable:DH = {(ga, gb, gab) for a, b ∈R
Zq} and R = {(ga, gb, gc) for a, b, c ∈R Zq}.

Strong-RSA. Let N be the product of two safe primes, N = pq, with p = 2p′+ 1 and q = 2q′+ 1
with p′, q′ primes. With φ(N) we denote the Euler function of N , i.e. φ(N) = (p− 1)(q− 1) = p′q′.
With Z∗N we denote the set of integers between 0 and N − 1 and relatively prime to N .

Let e be an integer relatively prime to φ(N). The RSA Assumption [33] states that it is infeasible
to compute e-roots in Z∗N . That is, given a random element s ∈R Z∗N it is hard to find x such that
xe = s mod N .

The Strong RSA Assumption (introduced in [2]) states that given a random element s in Z∗N
it is hard to find x, e 6= 1 such that xe = s mod N . The assumption differs from the traditional
RSA assumption in that we allow the adversary to freely choose the exponent e for which she will
be able to compute e-roots.

We now give formal definitions. Let SRSA(n) be the set of integers N , such that N is the
product of two n/2-bit safe primes.

Assumption 1 We say that the Strong RSA Assumption holds, if for all probabilistic polynomial
time adversaries A the following probability

Prob[N ← SRSA(n) ; s← Z∗N : A(N, s) = (x, e) s.t. xe = s mod N]

is negligible in n.

3 A share conversion protocol

Assume that we have two parties Alice and Bob holding two secrets a, b ∈ Zq respectively which
we can think of as multiplicative shares of a secret x = ab mod q. Alice and Bob would like to
compute secret additive shares α, β of x, that is random values such that α + β = x = ab mod q
with Alice holding a and Bob holding b.

Here we show a protocol based on an additively homomorphic scheme which has appeared many
times before in the literature (e.g. [9, 25, 27, 29]) but that we adapt to our needs. We assume that
Alice is associated with a public key EA for an additively homomorphic scheme E over an integer
N . Let K > q also be a bound which will be specified later.

In the following we will refer to this protocol as an MtA (for Multiplicative to Additive) share
conversion protocol. In our protocol we also assume that B = gb might be public. In this case
an extra check for Bob is used to force him to use the correct value b. We refer to this enhanced
protocol as MtAwc (as MtA “with check”).

1. Alice initiates the protocol by

– sending cA = EA(a) to Bob
– proving in ZK that a < K via a range proof

2. Bob computes the ciphertext cB = b ×E cA +E EA(β′) = EA(ab + β′) where β′ is chosen
uniformly at random in ZN . Bob sets his share to β = −β′ mod q. He responds to Alice by

– sending cB
– proving in ZK that b < K
– only if B = gb is public proving in ZK that he knows b, β′ such that B = gb and cB =
b×E cA +E EA(β′)

3. Alice decrypts cB to obtain α′ and sets α = α′ mod q

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 9

Correctness. Assume both players are honest and N > K2q. Then note that Alice decrypts
the value α′ = ab + β′ mod N . Note that if β′ < N − ab the reduction mod N is not executed.
Conditioned to this event, then the protocol correctly computes α, β such that α+ β = x mod q.

Since ab ≤ K2 and N > K2q we have that β′ ≥ N − ab with probability at most 1/q (i.e.
negligible).

Simulation. We first point out that as a stand-alone protocol, we can prove security even without
the range proofs. Indeed, if the adversary corrupts Alice, then Bob’s message can be simulated
without knowledge of its input b. Indeed a simulator can just choose a random b′ ∈ Zq and act
as Bob. The distribution of the message decrypted by Alice in this simulation is identically to the
message decrypted when Bob uses the real b, because the “noise” β′ is uniformly distributed in
ZN .

If the adversary corrupts Bob, then Alice’s message can be simulated without knowledge of its
input a. Indeed a simulator can just choose a random a′ ∈ Zq and act as Alice. In this case the
view of Bob is computationally indistinguishable from the real one due to the semantic security of
the encryption scheme E .

However if the range proofs are not used, a malicious Alice or Bob can cause the protocol to
“fail” by choosing large inputs. As a stand-alone protocol this is not an issue since the parties are
not even aware that the reduction mod N took place and no information is leaked about the other
party’s input. However, when used inside our threshold DSA protocol, this attack will cause the
signature verification to fail, and this information is linked to the size of the other party’s input.

Consider for example the case of Alice running the protocol with input a′ = q2 + a. If Bob’s
input is “small” then the reduction mod N will not take place and the protocol will succeed, and
eventually the signature produced by our threshold DSA protocol will verify (since a′ = a mod q).
But if Bob’s input is large the protocol will fail.

So we need security in the presence of an oracle that tells the parties if the reduction mod N
happens or not, but due to the ZK “range proofs” such reduction will only happen with negligible
probability and security holds.

Remark. An alternative approach. The above protocol is overwhelmingly correct, and hides b
perfectly. We could modify it so that β′ is always chosen uniformly at random in [0...N−K2]. This
distribution is statistically close to the uniform one over ZN (since K > q), therefore the value b
is now hidden in a statistical sense. On the other hand the protocol is always correct.

Remark. On the ZK proofs and the size of the modulus N . For the ZK proofs required in the
protocol we use simplified versions of similar ZK proofs presented in [29] (and already used in
[17]). These are ZK arguments with security holding under the Strong RSA Assumption. Moreover
they require K ∼ q3 which in turns require N > q7. We point out that for typical choices of
parameters, N is approximately q8 (since q is typically 256-bit long while N is a 2048-bit RSA
modulus), so this requirement is not problematic4.

4 Our scheme

We now describe our protocol. The players run on input G, g the cyclic group used by the DSA
signature scheme. We assume that each player Pi is associated with a public key Ei for an additively
homomorphic encryption scheme E .

4 For the simple range proof that a, b < K one could alternatively use a variation of Boudot’s proof [5]
which establish K ∼ q which sets N ∼ q3. This proof is less efficient that the ones from [17, 29] which
are anyway required for Bob in the MtAwc protocol. Moreover as we said earlier, N > q8 in practice
anyway so the improvement in the size of N is irrelevant for ECDSA.

10 Rosario Gennaro and Steven Goldfeder

4.1 Key generation protocol

– Phase 1. Each Player Pi selects ui ∈R Zq; computes [KGCi,KGDi] = Com(gui) and broadcast
KGCi. Each Player Pi broadcasts Ei the public key for Paillier’s cryptosystem.

– Phase 2. Each Player Pi broadcasts KGDi. Let yi be the value decommitted by Pi. The player
Pi performs a (t, n) Feldman-VSS of the value ui, with yi as the “free term in the exponent”
The public key is set to y =

∏
i yi. Each player adds the private shares received during the

n Feldman VSS protocols. The resulting values xi are a (t, n) Shamir’s secret sharing of the
secret key x =

∑
i ui. Note that the values Xi = gxi are public.

– Phase 3 Let Ni = piqi be the RSA modulus associated with Ei. Each player Pi proves in ZK
that he knows xi using Schnorr’s protocol [34] and that he knows pi, qi using any proof of
knowledge of integer factorization (e.g. [32])

4.2 Signature Generation

We now describe the signature generation protocol, which is run on input m (the hash of the
message M being signed) and the output of the key generation protocol described above. We note
that the latter protocol is a t-out-of-n protocol (and thus the secret key x is shared using (t, n)
Shamir secret-sharing).

Let S ⊆ [1..n] be the set of players participating in the signature protocol. We assume that
|S| = t. For the signing protocol we can share any ephemeral secrets using a (t, t) secret sharing
scheme, and do not need to use the general (t, n) structure. We note that using the appropriate
Lagrangian coefficients λi,S each player in S can locally map its own (t, n) share xi of x into a
(t, t) share of x, wi = (λi,S)(xi), i.e. x =

∑
i∈S wi. Since Xi = gxi and λi,S are public values, all

the players can compute Wi = gwi = X
λi,S

i .

– Phase 1. Each Player Pi selects ki, γi ∈R Zq; computes [Ci, Di] = Com(gγi) and broadcast Ci.
Define k =

∑
i∈S ki, γ =

∑
i∈S γi. Note that

kγ =
∑
i,j∈S

kiγj mod q

kx =
∑
i,j∈S

kiwj mod q

– Phase 2. Every pair of players Pi, Pj engages in two multiplicative-to-additive share conversion
subprotocols
• Pi, Pj run MtA with shares ki, γj respectively. Let αij [resp. βij] be the share received by

player Pi [resp. Pj] at the end of this protocol, i.e.

kiγj = αij + βij

Player Pi sets δi = kiγi+
∑
j 6=i αij +

∑
j 6=i βji. Note that the δi are a (t, t) additive sharing

of kγ =
∑
i∈S δi

• Pi, Pj run MtAwc with shares ki, wj respectively. Let µij [resp. νij] be the share received
by player Pi [resp. Pj] at the end of this protocol, i.e.

kiwj = µij + νij

Player Pi sets σi = kiwi+
∑
j 6=i µij+

∑
j 6=i νji. Note that the σi are a (t, t) additive sharing

of kx =
∑
i∈S σi

– Phase 3. Every player Pi broadcasts δi and the players reconstruct δ =
∑
i∈S δi = kγ. The

players compute δ−1 mod q.

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 11

– Phase 4. Each Player Pi broadcasts Di. Let Γi be the values decommitted by Pi who proves in
ZK that he knows γi s.t. Γi = gγi using Schnorr’s protocol [34].
The players compute

R = [
∏
i∈S

Γi]
δ−1

= g
(
∑

i∈S
γi)k

−1γ−1

= gγk
−1γ−1

= gk
−1

and r = H ′(R).
– Phase 5. Each player Pi sets si = mki + rσi. Note that∑

i∈S
si = m

∑
i∈S

ki + r
∑
i∈S

σi = mk + rkx = k(m+ xr) = s

i.e. the si are a (t, t) sharing of s.
• (5A) Player Pi chooses `i, ρi ∈R Zq computes Vi = Rsig`i , Ai = gρi , and [Ĉi, D̂i] =

Com(Vi, Ai) and broadcasts Ĉi.
Let ` =

∑
i `i and ρ =

∑
i ρi.

• (5B) Player Pi broadcasts D̂i and proves in ZK that he knows si, `i, ρi such that Vi = Rsig`i

and Aρii . If a ZK proof fails, the protocol aborts. Let V = g−my−r
∏
i∈S Vi (this should be

V = g`) and A =
∏
i∈S Ai.

• (5C) Player Pi computes Ui = V ρi and Ti = A`i . It commits [C̃i, D̃i] = Com(Ui, Ti) and
broadcasts C̃i.

• (5D) Player Pi broadcasts D̃i to decommit to Ui, Ti If
∏
i∈S [Ti] 6=

∏
i∈S Ui the protocol

aborts.
• (5E) Otherwise player Pi broadcasts si. The players compute s =

∑
i∈S si. If (r, s) is not a

valid signature the players abort, otherwise they accept and end the protocol.

Let us explain the intuition behind Phase 5. To avoid expensive ZK proofs, we are potentially
reconstructing an incorrect signature, which is then checked and possibly rejected. A naive approach
to the last phase is for the players to reveal si and reconstruct s =

∑
i si. But, for reasons that

will become clear in the proof, this is not provably secure—the intuitive reason being that if the
adversary makes the protocol fail by outputting an invalid signature the values si held by the
good players may give him valuable information.5 Naively this could be done by first broadcasting
Si = Rsi and check that

∏
i Si = Rs = gmyr according to the DSA verification algorithm. But

for similar reasons, this step makes the proof fail. So in our protocol the players mask Rsi with
a random value g`i . Let Vi = Rsig`i . Then

∏
i Vi = Rsg` and therefore V = g`. The players

cannot reveal g`i to check the correctness of V as this would “de-mask” Rsi so we “randomize” the
“aggregate” value to U = g`ρ. Alongside the players compute g`ρ via a distributed “Diffie-Hellman”
exchange. If this distributed randomized signature verification carries out, then it is safe to release
the shares si, but if the signature does not verify then the protocol aborts here and the values si
held by the good players are never revealed in the clear.

4.3 The Zero-Knowledge Proofs

In step (5B) a player P outputs V = Rsg` and A = gρ and must prove that he knows s, `, ρ
satisfying the above relationship. The proof for A is the classic Schnorr’s proof. For the value V a
classic (honest-verifier) ZK proof for this task is as follows:

– The Prover chooses a, b ∈R Zq and sends α = Ragb

– The Verifier sends a random challenge c ∈R Zq
– The Prover answers with t = a+ cs mod q and u = b+ c` mod q.
– The Verifier checks that Rtgu = αV c

5 We do not have an attack but we do not see a way to make a proof work either.

12 Rosario Gennaro and Steven Goldfeder

4.4 Security Proof

In this section we prove the following

Theorem 1. Assuming that

– The DSA signature scheme is unforgeable;
– The Strong RSA Assumption holds;
– KG, Com, Ver, Equiv is a non-malleable equivocable commitment scheme;
– the DDH Assumption holds

then our threshold DSA scheme in the previous section is unforgeable.

The proof of this theorem will proceed by a traditional simulation argument, in which we show
that if there is an adversary A that forges in the threshold scheme with a significant probability,
then we can build a forger F that forges in the centralized DSA scheme also with a significant
probability.

So let’s assume that there is an adversary A that forges in the threshold scheme with probability
larger than ε ≥ λ−c.

We assume that the adversary controls players P2, . . . , Pt+1 and that P1 is the honest player.
We point out that because we use concurrently non-malleable commitments (where the adversary
can see many commitments from the honest players) the proof also holds if the adversary controls
less than t players and we have more than 1 honest player. So the above assumption is without
loss of generality.

Because we are assuming a rushing adversary, P1 always speaks first at each round. Our sim-
ulator will act on behalf of P1 and interact with the adversary controlling P2, . . . , Pn. Recall how
A works: it first participates in the key generation protocol to generate a public key y for the
threshold scheme. Then it requests the group of players to sign several messages m1, . . . ,m`, and
the group engages in the signing protocol on those messages. At the end with probability at least
ε the adversary outputs a message m 6= mi and a valid signature (r, s) for it under the DSA key y.
This probability is taken over the random tape τA of A and the random tape τ1 of P1. If we denote
with A(τA)P1(τ1) the output of A at the end of the experiment described above, we can write

Probτ1,τA [A(τA)P1(τ1) is a forgery] ≥ ε

We say that an adversary random tape τA is good if

Probτ1 [A(τA)P1(τ1) is a forgery] ≥ ε

2

By a standard application of Markov’s inequality we know that if τA is chosen uniformly at random,
the probability of choosing a good one is at least ε

2 .
We now turn to building the adversary F that forges in the centralized scheme. This forger

will use A as a subroutine in a “simulated” version of the threshold scheme: F will play the role
of P1 while A will control the other players. F will choose a random tape τA for A: we know that
with probability at least ε

2 it will be a good tape. From now on we assume that A runs on a good
random tape.
F runs on input a public key y for the centralized DSA scheme, which is chosen according to

the uniform distribution in G. The first task for F is to set up an indistinguishable simulation of
the key generation protocol to result in the same public key y.

Similarly every time A requests the signature of a message mi, the forger F will receive the real
signature (ri, si) from its signature oracle. It will then simulate, in an indistinguishable fashion, an
execution of the threshold signature protocol that on input mi results in the signature (ri, si).

Because these simulations are indistinguishable from the real protocol for A, the adversary will
output a forgery with the same probability as in real life. Such a forgery m, r, s is a signature on
a message that was never queried by F to its signature oracle and therefore a valid forgery for F
as well. We now turn to the details of the simulations.

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 13

4.5 Simulating the key generation protocol

The simulation Sim-Key-Gen is described below. On input a public key y = gx for DSA the forger
F plays the role of P1 as follows. The forger F also runs on input a public key E for which he does
not know the matching secret key (this is necessary for when we have to make a reduction to the
semantic security of the Paillier encryption scheme).

Simulation: Repeat the following steps (by rewinding A) until A sends valid messages (i.e. a correct
decommitment) for P2, . . . , Pn on both iterations.

– F (as P1) selects a random value u1 ∈ Zq, computes [KGC1,KGD1]= Com(gu1) and broadcasts
KGC1. A broadcast commitments KCGi for i > 1;

– Each player Pi broadcasts KGDi; let yi be the decommitted value and the accompanying
Feldman-VSS (F will follow the protocol instructions). Each player broadcasts Ei. F broacasts
E1 = E.

– Let yi the revealed commitment values of each party. F rewinds the adversary to the decom-
mitment step and
• changes the opening of P1 to ˆKGD1 so that the committed value revealed is now ŷ1 =
y ·

∏n
i=2 y

−1
i .

• simulates the Feldman-VSS with free term ŷ1
– The adversary A will broadcasts ˆKGDi. Let ŷi be the committed value revealed by A at this

point (this could be ⊥ if the adversary refused to decommit).
– The players compute ŷ =

∏n
i=1 ŷi (set to ⊥ if any of the ŷi are set to ⊥ in the previous step).

We now prove a few lemmas about this simulation.

Lemma 1. The simulation terminates in expected polynomial time and is indistinguishable from
the real protocol.

Proof (Proof of Lemma 1). SinceA is running on a good random tape, we know that the probability
over the random choices of F , that A will correctly decommit is at least ε

2 >
1

2λc . Therefore we
will need to repeat the loop only a polynomial number of times in expectation.

The only differences between the real and the simulated views is that P1 runs a simulated
Feldman-VSS with free term in the exponent ŷ1 for which it does not know the discrete log. But
we have shown in Section 2.6 that this simulation is identically distributed from the real Feldman-
VSS. So the simulation of the protocol is perfect.

Lemma 2. For a polynomially large fraction of inputs y, the simulation terminates with output y
except with negligible probability.

Proof (Proof of Lemma 2). First we prove that if the simulation terminates on an output which is
not ⊥, then it terminates with output y except with negligible probability. This is a consequence of
the non-malleability property of the commitment scheme. Indeed, if A correctly decommits KGCi
twice it must do so with the same string, no matter what P1 decommits too (except with negligible
probability)6. Therefore ŷi = yi for i > 1 and therefore ŷ = y.

Then we prove that this happens for a polynomially large fractions of input y. Let yA =
∏n
i=2 yi,

i.e.the contribution of the adversary to the output of the protocol. Note that because of non-
malleability this value is determined and known to F by the time it rewinds the adversary. At that
point F rewinds the adversary and chooses ŷ1 = yy−1A . Since y is uniformly distributed, we have
that ŷ1 is also uniformly distributed. Because A is running on a good random tape we know that
at this point there is an ε

2 >
1

2λc fraction of ŷ1 for which A will correctly decommit. Since there is
a 1-to-1 correspondence between y and ŷ1 we can conclude that for a ε

2 >
1

2λc fraction of the input
y the protocol will successfully terminate.
6 This property is actually referred to as independence. This is introduced in [20] as a stronger version of

non-malleability and then proven equivalent to non-malleability in [4]).

14 Rosario Gennaro and Steven Goldfeder

4.6 Signature generation simulation

After the key generation is over, F must handle the signature queries issued by the adversary A.
When A requests to sign a message m, our forger F will engage in a simulation of the threshold
signature protocol. During this simulation F will have access to a signing oracle that produces
DSA signatures under the public key y issued earlier to F .

Semi-Correct Executions. Let k be such that R = gk
−1

and let k̃ be the value defined by the
inputs of the players in the MtA and MtAwc protocols. More specifically if ci is the encryption sent
by player Pi in the first round of those protocols, then define k̃i = Deci(ci) and k̃ =

∑
i k̃i.

We say that a protocol execution is semi-correct if in step (4) it holds that k = k̃. Note that this
condition is well defined since the values k, k̃ are uniquely determined by step (4). It is however
not feasible to decide if an execution is semi-correct or not.

Note that an execution is not semi-correct if the adversary “messes up” the computation of R
by revealing wrong shares in the computation of δ.

Bird-Eye View of Simulation. First we note that for semi-correct executions the adversary,
after Step 4 can already detect if the value Rs1 which will be broadcast in Step (5) by the good
player is correct or not. In fact by this point the adversary has si for i > 1 and for a “candidate”
Rs1 can check if ∏

i

Rsi = Rs = gmyr

Moreover in such executions when we arrive to step (5A) the simulator will be able to “extract”
the value s1 for the good player, which will allow the simulation to terminate successfully.

Second, we show that a simulation that is not semi-correct will fail at step (5D) with high
probability since the value U1 contributed by the good player is indistinguishable from random.
This allows us to simulate Phase (5) by simply using a random s̃1 for P1.

The final question is how do we detect if an execution is semi-correct or not. Here we use an
idea from [27]: the forging simulator will guess which one (if any) of the Q signature queries result
in an execution which is not semi-correct. Since this execution will be an aborting execution, the
simulation will stop there. With probability 1/(Q+ 1) the guess will be correct and the simulation
will succeed, and the forger will be able to produce a forgery.

We now proceed with the details.

4.7 Semi-correct executions

We now present a simulation that works for a semi-correct execution.
We point out that F does not know the secret values associated with P1: its correct share w1

of the secret key, and the secret key of its public key E1. The latter is necessary in order to reduce
unforgeability to the semantic security of the encryption scheme.

However F knows the secret keys of all the other players, and their shares wj . It also knows
the “public key” of P1, W1 = gw1 from the simulation of the key generation protocol.

In the following simulation F aborts whenever the protocol is supposed to abort, i.e. if the
adversary (i) refuses to decommit in steps 4, 5B or 5D or (ii) fails the ZK proof in Step 2 or 5 or
(iii) the signature (r, s) does not verify.

– Phase 1 All the players execute the protocol by broadcasting Ci (F runs the protocol correctly
for P1).

– Phase 2

• All the players execute the MtA protocol for k and γ. F runs the protocol correctly for P1

but it cannot decrypt the share α1j during the execution of the protocol with Pj on input
k1, γj , so F sets αij to a random value in Zq

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 15

• All the players execute the MtAwc protocol for k and x. Here F simulates P1 according to
the simulation described in Section 3. Moreover it extracts Pj resulting share ν1j from his
ZK proof.
In the protocol with Pj on input kj , w1, F does not know w1 so it just sends a random µj1
to Pj

Note that at this point F knows σi for the bad players. Indeed

σi = kiwi +
∑
j

µij +
∑
j

νji

and F knows all the values on the right end side of the equation.
– Phase 3 All the players execute the protocol by revealing δi. Let δ =

∑
i δi (F runs the

protocol correctly for P1 with the random shares it chose in step 2 – therefore F is effectively
broadcasting a random δ1).

– Phase 4
1. Each player reveals Di to decommit to Γi
2. F queries its signature oracle and receives a signature (r, s) on m. It computes R =

gms
−1

yrs
−1 ∈ G (note that H ′(R) = r ∈ Zq).

3. F rewinds A to the decommitment step, and for P1 changes the decommitment to Γ̂1 =
Rδ

∏
i>1 Γ

−1
i . Note that [Γ̂1

∏
i>1 Γi]

δ−1

= R
Note that at this point F knows the value si held by the bad players since si = kim+ σir. So
F can compute the correct s1 held by P1 as s−

∑
i>1 si.

– Phase 5 All players execute all the steps in this phase. F uses s1 as the share for P1

We prove the following Lemma about the simulation.

Lemma 3. Assuming that

– The Strong RSA Assumption holds
– KG, Com, Ver, Equiv is a non-malleable equivocable commitment;

then the simulation has the following properties

– on input m it outputs a valid signature (r, s) or aborts.
– it is computationally indistinguishable from a semi-correct real execution

Proof (Proof of Lemma 3).
The only differences between the real and the simulated views is the following: In the MtA

protocol the values ci = Ei(ki) are published and in the real protocol R = gk
−1

where k =
∑
i ki,

while in the simulated execution R = gk̂
−1

for the k̂ chosen by the signature oracle. This is easily
seen to be computationally indistinguishable under the semantic security of Paillier’s encryption.

Indeed, when F rewinds the adversary to ”fix” the value of R, it implicitly changes the value

k1 that F contributes for P1 to R. If R = gk̂
−1

, let (implicitly) k̂1 = k̂−
∑
i>1 ki. Note that Rk̂1 is

known since R
k̂1+

∑
i>1

ki = g, therefore Rk̂1 = gR−k2 . So to distinguish between the real execution
and the simulated one the adversary should detect if the ciphertext sent by F for P1 in the first
round of the MtAwc protocol contains a random k1 or the random k̂1 determined as logR(gR−k2)
which is infeasible under the semantic security of Paillier’s encryption (given that all values are
proven to be “small” and no wraparound modN happens).

Note that we are simulating a semi-correct execution with an execution which is not semi-
correct, but that’s OK because the two are indistinguishable.

However, because the real execution is a semi-correct one, we know that the correct shares of
k for the adversary are the ki that the simulator knows. Therefore the value s1 computed by the
simulator is consistent with a correct share for P1 for a valid signature (r, s), which makes Phase
5 indistinguishable from the real execution to the adversary.

16 Rosario Gennaro and Steven Goldfeder

Let (r, s) be the signature that F receives by its signature oracle in Step 2 of Phase 4. This
is a valid signature for m. We prove that if the protocol terminates, it does so with output (r, s).
This is a consequence of the non-malleability property of the commitment scheme. Indeed, if the
adversary correctly decommits, its openings must be the same except with negligible probability.

4.8 Simulation of a non semi-correct execution

We now show how to simulate the last execution for a non semi-correct execution when k̃ 6= k.
Details follow.

– Phases 1 to 3 The simulator runs the semi-correct simulation through Phase 3 (including
aborting at Phase 4 if the adversary fails to decommit).

– Phase 4 F does not rewind the adversary to “fix” the value of R, but runs the protocol normally
for P1.

– Phase (5) F chooses s̃1 ∈R Zq and runs Phase 5 with this value instead of s1, and choosing U1

as a random group element.

Before we prove that this simulation is indistinguishable for non-semi-correct executions let us
give an intuition. Note that the only difference with the previous simulation is that here F uses
a random share s̃1 instead of the s1 that it computed in the other simulation. The reason is that
the value s1 computed in the previous simulation is only guaranteed to be the “correct” share of s
if the execution is semi-correct. If the adversary shares ki don’t match anymore the value R then
s1 is incorrect, and therefore F chooses a random value instead. In turns this causes U1 to be
uniformly distributed and the check in step (5D) to fail.

The main point of the proof is that if the execution is not semi-correct then the value U1 is
(given the view of the adversary) computationally indistinguishable from uniform even in the real
execution (under the DDH assumption).

Our proof reflects the above intuition. First we prove that a real non-semi-correct execution
is indistinguishable from one in which P1 outputs a random U1. And then we prove that this is
indistinguishable from the simulation above, where the good player uses a random s̃1 instead of
the correct s1.

Lemma 4. Assuming that

– KG, Com, Ver, Equiv is a non-malleable equivocable commitment;
– the DDH Assumptions holds

then the simulation is computationally indistinguishable from a non-semi-correct real execution

Proof (Proof of Lemma 4).
We construct three games between the simulator (running P1) and the adversary (running all

the other players). In G0 the simulator will just run the real protocol. In G1 the simulator will
follow the real protocol but will choose U1 as a random group element. In G2 the simulator will
run the above simulation.

Indistinguishability of G0 and G1 Let us assume that there is an adversary A0 that can distinguish
between G0 and G1. We show how this contradicts the DDH Assumption.

Let Ã = ga, B̃ = gb, C̃ = gc be the DDH challenge where c = ab or random in Zq.

The distinguisher F0 runs A0, simulating the key generation phase so that y = B̃ = gb. It does
that by rewinding the adversary at the end of Phase 2 of the key generation protocol and changing
the decommitment of P1 to y1 = b

∏
i>1 y

−1
i .

F′ also extracts the values xi from the adversary. Note that at this point y = B̃ and F0 knows
xi, but not b and therefore not x1. Moreover F0 extracts the secret key for the encryption keys Ei
for i > 1. In this simulation F0 also knows the secret key matching E1 (since we are not making
any reduction to the security of the encryption scheme).

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 17

Then F0 runs the signature generation protocol for a not-semi-correct execution. Remember
here we assume that we have a (t′, t′) sharing of the secret key. So b =

∑
i∈S wi with F′ knowing

wi for i > 1 but not knowing w1. Denote with wA =
∑
i>1 wi (which is known to F0) and therefore

w1 = b− wA.
F0 runs the protocol normally for Phases 1,2,3,4. It extracts the value γi for i > 1 from the

adversary (and he knows γ1 since he ran P1 normally). Therefore F0 knows k such that R = gk
−1

since k = (
∑
i γi)δ

−1. It also knows k1 since it was chosen normally according to the protocol.
Before moving to the simulation of Phase 5, let’s look at the MtAwc protocol for the computation
of the shares σi.

We note that since F0 knows the decryption key for E1 he also knows all the shares µ1j from
the invocation of the MtAwc protocol between P1 and Pj on input k1 and wj respectively7.

For the MtAwc protocol between P1 and Pj on input w1 and kj respectively, F0 knows the
value kj input by Pj since he has extracted the secret key of Ej . However F0 does not know w1

therefore he sends a random µj1 to Pj and sets (implicitly) νj1 = kjw1 − αj1.
At the end we have that the share σ1 held by P1 is

σ1 = k1w1 +
∑
j>1

µ1j +
∑
j>1

νj1

by rearranging the terms and substituting the above we get

σ1 = k̃w1 +
∑
j>1

µ1j −
∑
j>1

µj1

where k̃ =
∑
i ki. Remember that since this is not a semi-correct execution then k̃ 6= k where

R = gk
−1

.
Since w1 = b− wA we have

σ1 = k̃b+ µ1

where

µ1 =
∑
j>1

µ1j −
∑
j>1

µj1 − k̃wA

with µ1, k̃ known to F0.
Note that this allows F0 to compute the correct value

gσ1 = B̃k̃gµ1

and therefore the correct value of Rs1 as

Rs1 = Rk1m+rσ1 = gk
−1(k1m+rσ1) = gk

−1(k1m+rµ1)B̃k
−1k̃r

or

Rs1 = gµ̂1B̃β̂1

where µ̂1 = k−1(k1m+ rµ1) and β̂1 = k−1k̃r and µ̂1 and β̂1 are known to F0.
We now continue the simulation

– 5A/5B F0 selects a random `1 and sets V1 = Rs1g`1 A1 = gρ1 = Ã = ga It simulates the
ZK proof (since it does not know ρ1 or s1). It extracts si, `i, ρi from the adversary such that

Vi = Rsig`i = gk
−1sig`i and Ai = gρi . Let sA =

∑
i>1 k

−1si

7 In this case we do not need to extract anything from Pj ’s ZK proof, but we still need to check that the
value sent by Pj is correct.

18 Rosario Gennaro and Steven Goldfeder

Note that
V = g−my−r

∏
i

Vi = g−my−rV1
∏
i>1

Vi

and therefore substituting the above relations (and setting ` =
∑
i `i)

V = g`Rs1gsA−my−r

Note that y = B̃ so y−r = B̃−r. Therefore

V = g`gµ̂1B̃β̂1gsA−mB̃−r

or
V = g`gθB̃κ

where θ = µ̂1 + sA −m and κ = β̂1 − r known to F0.
Note that for executions that are not semi-correct κ 6= 0

– 5C/5D F0 computes T1 = A`1 correctly (which he can do since he knows `1) but for U1 outputs
U1 = Ã`+θC̃κ and it aborts.

Note what happens when C̃ = gab. By our choice of a = ρ1 and b = x we have that U1 = V ρ1 as
in Game G0. However when C̃ is a random group element, U1 is uniformly distributed as in G1.

Therefore under the DDH assumption G0 and G1 are indistinguishable.

Indistinguishability of G1 and G2 We note that in G2 the simulator broadcasts a random Ṽ1 = Rs̃1g`1

which is indistinguishable from the correct V1 = Rs1g`1 because of the “mask” g`1 which (under
the DDH) is computationally indistinguishable from a random value, given that the adversary only
has A1.

More in detail, let Ã = ga−δ, B̃ = gb and C̃ = gab be the DDH challenge where δ = 0 or
random in Zq.

The simulator here proceeds as in G0 (i.e. the regular protocol) until Phase 5.

– 5A/5B F0 broadcasts V1 = Rs1Ã and A1 = B̃. It simulates the ZK proof (since it does not

know `1 or ρ1). It extracts si, `i, ρi from the adversary such that Vi = Rsig`i = gk
−1sig`i and

Ai = gρi .

– 5C/5D F0 computes U1 as a random element and T1 = C̃Ã

∑
j>1

ρj and it aborts.

Note what happens when Ã = ga. By our choice, a = `1 and b = ρ1 and we have that
V1‘ = Rs1g`1 and T1 = A`1 as in Game G1. However when Ã = gag−δ with a random δ, then this
is equivalent to have V1‘ = Rs̃1g`1 and T1 = A`1 with a randomly distributed s̃1 as in Game G2

Therefore under the DDH assumption G1 and G2 are indistinguishable.

4.9 Finishing up the proof

Before we conclude the proof we note that our protocol detects the presence of a malicious adversary
by noticing that the signature does not verify. As pointed out by Lindell in [27] this strategy is
not immediately simulatable against a malicious adversary for the following reason. Consider what
happens in Phase 5: In the semi-correct simulation F rewinds the adversary to “hit” the correct
s. But if the adversary had decided to be malicious and terminate the protocol with an invalid
signature, then the protocol would not be simulatable. If F hits an invalid signature “on purpose”
(e.g. by not rewinding), then the simulation is distinguishable by a semi-honest adversary who
does hit the correct signature.

Luckily for a “game-based” definition of security, this is not an issue as discussed in [27]. Let
Q < λc be the maximum number of signature queries that the adversary makes. In the real protocol,
the adversary will output a forgery after ` < Q queries, either because it stops submitting queries,
or because the protocol aborts. Therefore in our simulation, following Lindell [27], we choose a
random index ι ∈ [0...Q]:

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 19

– if ι = 0 we assume that all executions are semi-correct. In this case we can always simulates
as in the previous section

– otherwise we assume that the first ι − 1 executions are semi-correct, but at the ιth execution
the value V is not equal to g`.

With probability 1/(Q+ 1) ≥ λ−c this is a correct guess.
We can now complete the proof.

Proof (Proof of Theorem 1).

Unforgeability. The forger F described above produces an indistinguishable view for the ad-
versary A, and therefore, A will produce a forgery with the same probability as in real life. The

success probability of F is at least ε3

8Q where Q is the maximum number of queries. That’s because
F has to succeed in

– choosing a good random tape for A (this happens with probability larger than ε
2)

– hitting a good public key y (this also happens with probability larger than ε
2)

– guessing the correct index query ` (this happens with probability larger than 1/Q

Under those conditions, the adversary A will output a forgery with probability at least ε
2 .

Under the security of the DSA signature scheme, the probability of success of F must be
negligible, which implies that ε must also be negligible, contradicting the assumption that A has
a non-negligible probability of forging.
Correctness. If all players are honest, the protocol fails only if one of the MtA protocols fails.
Since we have a total of 4n2 such sub-protocols executed during a run of our signature protocol,

we have that our protocol fails with probability at most 4n2

q which is negligible.

5 Removing the ZK proofs from the MtA protocol

As we mentioned in the Introduction, the ZK proofs in the MtA protocol are the most expensive
step of our protocol due not only to the fact that these are ZK proofs over the Paillier cryptosystem,
but also that every player has to run n of them (since they are specific to each execution of the
MtA protocol).

We consider what happens if the range proofs are eliminated. As we discussed in Section 3 the
MtA protocol needs to be secure in the presence of an oracle that tells the parties if a reduction
modN happens during the execution. Note that in reality the oracle represents the failure of the
verification of the signature generated by the protocol, and if that happens the system is reset. So
the oracle is a very weak oracle, which stops the working the moment it tells you that a reduction
modN happened.

We conjecture that our protocol remains secure even if the ZK proofs are eliminated for Alice
and simplified for Bob in the MtA protocol and simplified in the MtAwc protocol. More precisely
both the MtA and MtAwc protocol work as follow:

– Neither party proves that their values a, b are “small”
– Bob broadcasts B = gb, B′ = gβ

′
together with a ZK proof of knowledge for b, β′ mod q using

Schnorr’s prooof [34]. Alice also checks that gα = BaB′.
We point out that B = gb is public in our threshold DSA protocol. Indeed in one case b = wi,
the share of the secret key x held by player Pi and B = gb is public at the end of the key
generation phase together with a ZK proof of knowledge. In the other case b = γi, and B = gb

will be public at the end of following round which is when Alice performs the above check.

To support our conjecture we propose some “ad-hoc” computational assumptions which if true,
they would guarantee the security of the protocol. The assumptions are new and non-standard,

20 Rosario Gennaro and Steven Goldfeder

yet they look reasonable. We discuss them informally below – a full proof of security will appear
in the final version.

Information Leaked to Alice by removing the Range Proof. If we remove the proofs
that the input a used by Alice is small, we leak information about the input used by Bob via the
knowledge of whether a reduction mod N happened or not. Notice that Bob’s inputs to the MtA
and MtAwc protocols are the share of ρ (the mask for the inversion of k) and the share of x (the
secret key).

Note that these values are all “high entropy” secrets and that a reduction mod N can only
happen once, since if that happens the protocol ends.

Therefore the following stronger assumption on the unforgeability of DSA would suffice. We
define a game between a Challenger and an Attacker:

– The Challenger gives to the Attacker a DSA public key y = gx and a random number x̂ ∈R Zq.
Let x′ = x− x̂ mod q. The Attacker chooses an RSA modulus N > q3.

– The Attacker submits a message m and three arbitrary numbers λ1, λ2, ρ̂1.
– The Challenger chooses ρ′ ∈R Zq and β1, β2 ∈R ZN . If λ1x

′+β1 and λ2ρ
′+β2 are less than N ,

the Attacker receives (r, s) a valid DSA signature on m and also α = ρk mod q where k ∈R Zq
and r = gk

−1

.
Otherwise the game stops.

The Attacker wins if he forges a signature on a message for which the Challenger did not output
a signature. The assumption is that winning this game is infeasible.

We believe this assumption to be reasonable because it appears that the Attacker receives only
limited information about the values x, k.

Note that we can’t simulate Alice’s view in this case, but we are arguing that the information
leaked is minimal and does not affect security in a game-based definition of unforgeability.

Information Leaked to Bob by removing the ZK Consistency Proof. Here instead we
are able to simulate Bob’s view under a stronger assumption on the Paillier cryptosystem.

If Bob is corrupted, then the simulated Alice sends the encryption of a random value cA = E(â).
But then it must decide if to accept or reject at the end of step (2) (where the real Alice checks
that gα = BaB′) without knowing â. Here we assume that the simulator is provided with an oracle
ΩcA(cB , b, β) which answers 1 if and only if Dec(cB) = b ·Dec(cA) + β mod q. Then the simulator
will extract b, β from the malicious Bob’s proof of knowledge, and query ΩcA(cB , b, β) and accepts
if the oracle answers 1.

Security cannot be based on the semantic security of the Paillier’s encryption scheme anymore
since the presence of the oracle immediately implies that Paillier is not semantically secure anymore.
However consider the following experiment:

– Generate a Paillier key (E,D)
– Generate two random values a0, a1 ∈R Zq and publish A = ga0

– Choose a random bit b and publish c = E(ab)
– Let b′ be the output of the adversary who is allowed restricted access to the oracle Ωc – by

restricted we mean that the oracle will stop working after it outputs 0.

We say that the Paillier-ECR assumption holds if for every PPT adversary, the probability that
b = b′ is negligible. Under the Paillier-ECR assumption we can prove that no adversary given ga0

can distinguish if the MtA protocol was run with a0 or a1 (with both values being ”high entropy” in
particularly randomly chosen). This is sufficient to simulate MtA with high entropy inputs, which
is what is needed to prove security of our threshold DSA protocol.

We note that our Paillier-ECR assumption is a weaker version of the Paillier-EC assumption in
[27]. In the latter the oracle access is not restricted, which makes the assumption much stronger.
In our case it is sufficient to consider the restricted oracle since the real protocol stops if Alice
detects cheating.

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 21

6 Extensions

Here we present the following natural extensions to our result.

6.1 Other additively homomorphic schemes.

Our scheme works with any additively homomorphic scheme with no modification. It requires an
assumption analogous to the Paillier-EC or an efficient ZK Proof for the statement in the MtAwc
protocol.

We also note that it is important that security holds under “adversarially chosen” public keys
(i.e. we need to prove or assume that the adversary cannot generate a public key such that it gives
him and advantage in the MtA protocol).

6.2 Other multiplicative to share conversions.

Our threshold DSA scheme works with any MtA protocol, i.e. any protocol that allows two parties
to convert their multiplicative shares of a secret into additive shares.

In particular the classic approach based on oblivious transfer by Gilboa [21] can be used. The
original protocol in [21] is secure only against semi-honest adversaries, but it can be strengthened
against a malicious adversary (see the literature on SPDZ or the recent work on threshold DSA in
[12]).

6.3 Simulation-Based Security

Our proof uses the game-based definition of unforgeability. The main technical reason is that
the simulator cannot detect if the current execution is semi-correct or not, and therefore has to
guess. This prevents us from achieving the stronger notion of simulation-based security (where
each execution of the protocol can be fully simulated).

While in the real world it is unfeasible to decide if an execution is semi-correct or not, the
simulator can do that if it were able to “extract” the bad players’ inputs to the MtA protocols.
Indeed that would allow the simulator to check that the values δi, Γi sent by the bad players
in Phases 3 and 4 are consistent with the inputs entered in the MtA protocols. If they are, the
execution is semi-correct, if they are not then the execution is not semi-correct. Once the simulator
knows which execution it is, it can choose the correct simulation strategy.

We note that in our current simulation, the simulator can already extract the input ki (since
it knows the decryption key of the bad players, having it extracted it during the key generation
simulation) and the input wi (the share of the secret key, which it also extracted during key
generation). But in our current simulation it is not able to extract γi since we do not require the
players to prove knowledge of it.

The best way to solve this is to require Pi, Pj to run MtAwc also when interacting on inputs
ki, γj , since MtAwc forces the respondent (which runs on input γi) to prove knowledge of its input.
In turn this will allow the simulator to extract γi for the bad players and detect what kind of
execution it is being run.

We note that the maliciously secure OT-based MtA protocol from [12] also allows for input
extraction, and therefore if used in our protocol, it will yield a fully simulatable protocol.

6.4 Deterministic Key Generation

A very popular feature of Bitcoin wallets is deterministic key generation. Introduced in Bitcoin-
Improvement-Proposal 32 (BIP32), the idea of this scheme is to allow one to deterministicly gen-
erate many keys from a single ECDSA key. Our key sharing is compatible with BIP32 public
derivations, and we leave it as future work to prove security in this setting.

22 Rosario Gennaro and Steven Goldfeder

7 Implementation, Benchmarks, and Evaluation

We implemented both the key generation and signature generation of our protocol, and we confirm
that they are highly efficient and fast enough to be used in practice. We benchmarked the version of
our protocol from Section 5 that does not contain the range proofs, but relies on the Paillier-ECR
assumption. We compare the performance of our protocol to the runtimes of Gennaro et al. [17]
and Boneh et al. [4]. All benchmarks were single-threaded and run on an an Intel quad-core i7-6700
CPU @ 3.40GHz and 64GB of RAM. We ran the code [17] and [4] on our benchmark machine to
get an accurate comparison. It should be noted that we implemented our scheme in C while theirs
is a Java implementation which calls native C libraries for the heaviest arithmetic computations.
All benchmarks were taken over the secp256k1 curve, which is is the curve used in Bitcoin and
more recently a NIST standard.

For the curve operations, we used libsecp256k1.8 We implemented the MtA protocol with Paillier
using the implementation from libhcs.9.

7.1 Benchmarking the data complexity

When compared to [17, 4], we reduce the amount of data transmitted. All figures in this section
were measured empirically from the respective implementations, and thus it is possible that they
may be further optimized in practice. For a threshold of t (i.e. when there are t + 1 participants
in the signing protocol), the total data d in bytes sent and received by a given player to/from all
other players during the signing protocol is given by: ’

dours(t) = 2, 328 + t× 5, 024 Bytes

In contrast, the data sent to/from a given player in [17] is given by:

dGennaro(t) = (t+ 1)× 34, 578 Bytes

And the data transmitted per player in [4] is given by:

dBoneh(t) = (t+ 1)× 38, 189 Bytes

Lastly, we mention that for the 2-of-n case, we have dours(t = 1) = 3, 976 B. In contrast, the
recent protocol of [12] requires far more than that with 86.7 KiB for 2-of-2 signing and 106.7 KiB
for 2-of-n signing. Lindell’s scheme [27] only requires 769 B to be communicated in the 2-of-2 case
(but does not support 2-of-n).

7.2 Benchmarking signature generation time

Following the methodology of [4, 17], we benchmark the raw computation time of a single player
without counting network costs. Since each player runs their computation in parallel, this represents
the running time of the entire protocol other than network latency. We find that our protocol
significantly outperforms both of [4, 17] when using this metric.

As in [4, 17], the protocol running time has a fixed cost that is independent of the number of
players plus a linear marginal cost as the threshold increases. We stress that the signing time only
depends on the number of active participants (t+ 1), but does not depend on n, the total number
of players. All times are given on a single core, and were averaged over 1000 iterations.

Our protocols running time is given by:

rours(t) = 29 + (t)× 24 milliseconds

8 https://github.com/bitcoin-core/secp256k1
9 https://github.com/tiehuis/libhcs

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 23

The running time of [17] is given by:

rGennaro(t) = 142 + (t)× 52 milliseconds

The running time of [4] is given by:

rBoneh(t) = 397 + (t)× 91 milliseconds

Fig. 1. Comparison of the raw computation time as the threshold increases between this work
and previous schemes.

We can see that our protocol significantly outperforms both previous schemes. See Figure 1 for
a comparison of the concrete raw computation times for thresholds up to 20.

8 Conclusion

We have presented a threshold ECDSA protocol that is an improvement over the existing schemes
by every metric. Although [17] has been available for some time, there are still to our knowledge
no Bitcoin services or user wallets that offer threshold-signature security. We believe that this is
due to the impracticality of their distributed key generation protocol. Having to rely on a trusted
dealer to distribute key shares exposes a single point of failure for the system and in doing so runs
contrary to the entire premise of using threshold signatures in the first place.

We solve this problem by presenting and implementing a new scheme with a highly efficient
distributed key generation protocol. Together with our reduction in running time and data trans-
ferred, we believe that ECDSA threshold signatures are finally mature enough for adoption.

9 Acknowledgements

We thank Harry Kalodner, Yehuda Lindell, Ariel Nof, Ben Riva, and Omer Shlomovits for useful
feedback and discussions and for pointing out errors in earlier drafts.

Rosario Gennaro is supported by NSF Grant 1565403. Steven Goldfeder is supported by an NSF
Graduate Research Fellowship under grant number DGE 1148900 and NSF award CNS-1651938.

24 Rosario Gennaro and Steven Goldfeder

References

1. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds
of interaction. In: Proceedings of the eighth annual ACM Symposium on Principles of distributed
computing. pp. 201–209. ACM (1989)

2. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In:
International Conference on the Theory and Applications of Cryptographic Techniques. pp. 480–494.
Springer (1997)

3. Boneh, D.: Digital signature standard. In: Encyclopedia of cryptography and security, pp. 347–347.
Springer (2011)

4. Boneh, D., Gennaro, R., Goldfeder, S.: Using level-1 homomorphic encryption to improve threshold
dsa signatures for bitcoin wallet security. In: Latincrypt (2017)

5. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: International Conference
on the Theory and Applications of Cryptographic Techniques. pp. 431–444. Springer (2000)

6. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryp-
tosystems. In: Annual International Cryptology Conference. pp. 98–116. Springer (1999)

7. Canetti, R., Goldwasser, S.: An efficient Threshold public key cryptosystem secure against adaptive
chosen ciphertext attack. In: Advances in Cryptology - EUROCRYPT ’99, International Conference
on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999,
Proceeding. pp. 90–106 (1999)

8. Damgard, I., Groth, J.: Non-interactive and reusable non-malleable commitment schemes. In: Proceed-
ings of the thirty-fifth annual ACM symposium on Theory of computing. pp. 426–437. ACM (2003)

9. Damg̊ard, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing aes via an actively/covertly
secure dishonest-majority mpc protocol. In: International Conference on Security and Cryptography
for Networks. pp. 241–263. Springer (2012)

10. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable commitment. In: Pro-
ceedings of the thirtieth annual ACM symposium on Theory of computing. pp. 141–150. ACM (1998)

11. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive non-malleable com-
mitment. In: International Conference on the Theory and Applications of Cryptographic Techniques.
pp. 40–59. Springer (2001)

12. Doerner, J., Kondi, Y., Lee, E., et al.: Secure two-party threshold ecdsa from ecdsa assumptions. In:
IEEE Symposium on Security and Privacy. p. 0. IEEE (2018)

13. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography,”. In: Proceedings of the 23rd Annual
Symposium on the Theory of Computing, ACM (1991)

14. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations.
In: Annual International Cryptology Conference. pp. 16–30. Springer (1997)

15. Gennaro, R.: Multi-trapdoor commitments and their applications to proofs of knowledge secure under
concurrent man-in-the-middle attacks. In: Annual International Cryptology Conference. pp. 220–236.
Springer (2004)

16. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ecdsa with fast trustless setup. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security. pp. 1179–1194.
ACM (2018)

17. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal dsa/ecdsa signatures and an application
to bitcoin wallet security. In: International Conference on Applied Cryptography and Network Security.
pp. 156–174. Springer (2016)

18. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold dss signatures. In: International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 354–371. Springer (1996)

19. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold dss signatures. Information and
Computation 164(1), 54–84 (2001)

20. Gennaro, R., Micali, S.: Independent zero-knowledge sets. In: International Colloquium on Automata,
Languages, and Programming. pp. 34–45. Springer (2006)

21. Gilboa, N.: Two party rsa key generation. In: Advances in Cryptology - CRYPTO ’99. pp. 116–129
(1999)

22. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)

23. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient rsa key generation and threshold paillier in
the two-party setting. In: Cryptographers’ Track at the RSA Conference. pp. 313–331. Springer (2012)

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 25

24. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: Introducing concurrency, re-
moving erasures. In: International Conference on the Theory and Applications of Cryptographic Tech-
niques. pp. 221–242. Springer (2000)

25. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making spdz great again. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 158–189. Springer (2018)

26. Kravitz, D.W.: Digital signature algorithm (Jul 27 1993), uS Patent 5,231,668

27. Lindell, Y.: Fast secure two-party ecdsa signing. In: Annual International Cryptology Conference. pp.
613–644. Springer (2017)

28. Lindell, Y., Nof, A.: Fast secure multiparty ecdsa with practical distributed key generation and appli-
cations to cryptocurrency custody. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. pp. 1837–1854. ACM (2018)

29. MacKenzie, P., Reiter, M.K.: Two-party generation of dsa signatures. In: Annual International Cryp-
tology Conference. pp. 137–154. Springer (2001)

30. MacKenzie, P., Yang, K.: On simulation-sound trapdoor commitments. In: International Conference
on the Theory and Applications of Cryptographic Techniques. pp. 382–400. Springer (2004)

31. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 223–238. Springer (1999)

32. Poupard, G., Stern, J.: Short proofs of knowledge for factoring. In: Public Key Cryptography, Third
International Workshop on Practice and Theory in Public Key Cryptography, PKC 2000, Melbourne,
Victoria, Australia, January 18-20, 2000, Proceedings. pp. 147–166 (2000)

33. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

34. Schnorr, C.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)

35. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

A The ZK Proofs for the MtA protocol

In this section we describe the ZK proofs that are needed in the MtA protocol (see Section 3). The
proofs are based on similar ones from [29]: specifically we prove statements that are simpler than
the ones needed in [29].

In these proofs the Verifier uses an auxiliary RSA modulus Ñ which is the product of two safe
primes P̃ = 2p̃+ 1 and Q̃ = 2q̃ + 1 with p̃, q̃ primes. The Verifier also uses two values h1, h2 ∈ Z∗Ñ
according to the commitment scheme in [14]. Security is based on the assumption that the Prover
cannot solve the Strong RSA problem over Ñ .

Therefore our initialization protocol must be augmented with each player Pi generating an
additional RSA modulus Ñi, and values h1i, h2i, together with a proof that they are of the correct
form (see [14]).

A.1 Range Proof

This proof is run by Alice (the initiator) in both MtA and MtAwc protocols.
The input for this proof is a Paillier public key N,Γ and a value c ∈ ZN2 . The prover knows

m ∈ Zq and r ∈ Z∗N such that c = ΓmrN mod N2, where q is the order of the DSA group.
At the end of the protocol the Verifier is convinced that m ∈ [−q3, q3].

– The Prover selects α ∈R Zq3 , β ∈R Z∗N , γ ∈R Zq3Ñ and ρ ∈R ZqÑ .

The Prover computes z = hm1 h
ρ
2 mod Ñ , u = ΓαβN mod N2, w = hα1h

γ
2 mod Ñ .

The Prover sends z, u, w to the Verifier.
– The Verifier selects a challenge e ∈R Zq and sends it to the Prover.
– The Prover computes s = reβ mod N , s1 = em+ α and s2 = eρ+ γ and sends s, s1, s2 to the

Verifier.
– The Verifier checks that s1 ≤ q3, u = Γ s1sNc−e mod N2 and hs11 h

s2
2 z
−e = w mod Ñ .

26 Rosario Gennaro and Steven Goldfeder

Completeness. By inspection.

Soundness. Let Ñ , s̃ be our Strong RSA challenge. We show how to solve it using a Prover who
succeeds on incorrect instances (i.e. where |m| > q3).

Let h2 = s̃ and h1 = hχ2 for a random χ ∈ ZqÑ . It is not hard to see that the distribution of
these values is indistinguishable from the real one with sufficiently high probability.

Run the Prover on a successful execution over a challenge e and then rewind him and find a
successful execution with challenge ê. Therefore we have the same first message z, u, w and two
set of answers s, s1, s2 for challenge e, and ŝ, ŝ1, ŝ2 for challenge ê both satisfying the verification
equations. Let ∆E = e− ê, ∆s1 = s1 − ŝ1 and ∆s2 = s2 − ŝ2.

Let λ = GCD(∆s2 + χ∆s1, ∆E). Assume λ 6= ∆E : denote with λs = (∆s2 + χ∆s1)/λ and
λE = ∆E/λ > 1. Then we find µ, ν such that µλs + νλE = 1.

Then the solution to the Strong RSA challenge is x̃ = zµs̃ν mod Ñ , λE . Indeed note that

w = hs11 h
s2
2 z
−e = hŝ11 h

ŝ2
2 z
−ê mod Ñ

therefore
z∆E = h∆s1

1 h∆s2
2 = s̃∆s2+χ∆s1 mod Ñ

which implies
zλE = s̃λS mod Ñ

Concluding
s̃ = s̃µλs+νλE = [zµs̃ν]λE mod Ñ

We now need to prove that the case λ = ∆E cannot happen with high probability.
Consider first the case λ = ∆E but ∆E does not divide ∆s1. Write χ = χ0+χ1p̃q̃ with χ1 chosen

uniformly at random from a set of size > q. Note that the value χ1 is information theoretically
secret from the adversary (who only has h1, h2). We have that

∆s2 + χ∆s1 = ∆s2 + χ0∆s1 + χ1∆s1p̃q̃

Then there is a prime power ab (with a ≥ 2) such that ab|∆E , ab−1|∆s1 but ab does not divide
∆s1. Note that this implies that ab−1|∆s2. Set c0 = (∆s2 + χ0∆s1)/ab−1 and c1 = ∆s1p̃q̃/a

b−1.
We have that c0 + χ1c1 = 0 mod a and c1 6= 0 mod a. The number of elements χ1 for which this
equivalence holds is at most q/a+ 1 and thus the probability of this holding for a random choice
of χ1 is at most 1

a + 1
q which is at most 1

2 + 1
q . Otherwise we are in the case above with λ 6= ∆E .

Now consider the case λ = ∆E and ∆E |∆s1. Note that this implies that ∆E |∆s2 as well. Define
m1 = ∆s1/∆E , ρ1 = ∆s2/∆E , α1 = (eŝ1 − ês1)/∆E , γ1 = (eŝ2 − ês2)/∆E .

These ensure that z = hm1
1 hρ12 mod Ñ , w = hα1

1 hγ12 mod Ñ , s1 = em1 +α1 and ŝ1 = êm1 +α1.
Finally denote with m′1 = ∆s1∆

−1
E mod N and α′1 = (eŝ1 − ês1)∆−1E mod N . Note that since

m′1 = m1 mod N and α′1 = α1 mod N , there must be r1, β
′ ∈ Z∗N such that

c = Γm
′
1rN1 and u = Γα

′
1(β′)N mod N2

At this point we know the following facts

s1 < q3 s1 = em1 + α1 s1 = em′1 + α1 mod N

ŝ1 < q3 ŝ1 = êm1 + α1 ŝ1 = êm′1 + α1 mod N

Therefore we can prove that m1 ∈ [−q3, q3] since |m1| ≤ |∆s1| ≤ q3. But this implies that m′1 ∈
[−q3, q3] since m′1 = m1 mod N and N > q7.

Honest-Verifier Zero-Knowledge. The simulator proceeds as in [29]. Choose z, s, s1, s2, e
according to the appropriate distribution and set u = Γ s1sNc−e mod N and w = hs11 h

s2
2 z
−e mod

Ñ .

Fast Multiparty Threshold ECDSA with Fast Trustless Setup 27

A.2 Respondent ZK Proof for MtAwc

This proof is run by Bob (the responder) in the MtAwc protocol. For the MtA protocol a simpler
version of this proof if needed, which we present later.

The input for this proof is a Paillier public key N,Γ and two values c1, c2 ∈ ZN2 , together with
a value X in G the DSA group.

The Prover knows x ∈ Zq, y ∈ ZN and r ∈ Z∗N such that c2 = cx1Γ
yrN mod N2, and X = gx ∈

G, where q is the order of the DSA group.
At the end of the protocol the Verifier is convinced of the above and that x ∈ [−q3, q3].

– The Prover selects α ∈R Zq3 , ρ ∈R ZqÑ , ρ′ ∈R Zq3Ñ , σ ∈ ZqÑ , β ∈R Z∗N , γ ∈R Z∗N and
τ ∈R ZqÑ .

The Prover computes u = gα, z = hx1h
ρ
2 mod Ñ , z′ = hα1h

ρ′

2 mod Ñ , t = hy1h
σ
2 mod Ñ , v =

cα1Γ
γβN mod N2, and w = hγ1h

τ
2 mod Ñ .

The Prover sends u, z.z′, t, v, w to the Verifier.
– The Verifier selects a challenge e ∈R Zq and sends it to the Prover.
– The Prover computes s = reβ mod N , s1 = ex+ α, s2 = eρ+ ρ′, t1 = ey + γ and t2 = eσ + τ .

The Prover sends s, s1, s2, t1, t2 to the Verifier.
– The Verifier checks that s1 ≤ q3, g1 = Xeu ∈ G, hs11 h

s2
2 = zez′ mod Ñ , ht11 h

t2
2 = tew mod Ñ ,

and cs11 s
NΓ t1 = ce2v mod N2.

Completeness. By inspection.

Soundness. Let Ñ , s̃ be our Strong RSA challenge. We show how to solve it using a Prover who
succeeds on incorrect instances (i.e. where |x| > q3).

Let h2 = s̃ and h1 = hχ2 for a random χ ∈ ZqÑ . It is not hard to see that the distribution of
these values is indistinguishable from the real one with sufficiently high probability.

Run the prover on a successful execution over a challenge e and then rewind him and find a
successful execution with challenge ê. Therefore we have the same first message u, z, z′, t, v, w and
two set of answers s, s1, s2, t1, t2 for challenge e, and ŝ, ŝ1, ŝ2, t̂1, t̂2 for challenge ê both satisfing
theverification equations. Let ∆E = e − ê, ∆s1 = s1 − ŝ1, ∆s2 = s2 − ŝ2, ∆t1 = t1 − t̂1 and
∆t2 = t2 − t̂2.

Let λ = GCD(∆s2 + χ∆s1, ∆E). Assume λ 6= ∆E : denote with λs = (∆s2 + χ∆s1)/λ and
λE = ∆E/λ > 1. Then we find µ, ν such that µλs + νλE = 1.

Then the solution to the Strong RSA challenge is x̃ = zµs̃ν mod Ñ , λE . Indeed note that

z′ = hs11 h
s2
2 z
−e = hŝ11 h

ŝ2
2 z
−ê mod Ñ

therefore
z∆E = h∆s1

1 h∆s2
2 = s̃∆s2+χ∆s1 mod Ñ

which implies
zλE = s̃λS mod Ñ

Concluding
s̃ = s̃µλs+νλE = [zµs̃ν]λE mod Ñ

Let λ′ = GCD(∆t2 + χ∆t1, ∆E). In a similar way as above we can prove that if λ′ 6= ∆E then
we can solve our Strong RSA challenge.

Therefore we can limit ourselves to the case λ = λ′ = ∆E .
Consider first the case λ = λ′ = ∆E but ∆E does not divide ∆s1. Write χ = χ0 + χ1p̃q̃ with

χ1 chosen uniformly at random from a set of size > q. Note that the value χ1 is information
theoretically secret from the adversary (who only has h1, h2). We have that

∆s2 + χ∆s1 = ∆s2 + χ0∆s1 + χ1∆s1p̃q̃

28 Rosario Gennaro and Steven Goldfeder

Then there is a prime power ab (with a ≥ 2) such that ab|∆E , ab−1|∆s1 but ab does not divide
∆s1. Note that this implies that ab−1|∆s2. Set c0 = (∆s2 + χ0∆s1)/ab−1 and c1 = ∆s1p̃q̃/a

b−1.
We have that c0 + χ1c1 = 0 mod a and c1 6= 0 mod a. The number of elements χ1 for which this
equivalence holds is at most q/a+ 1 and thus the probability of this holding for a random choice
of χ1 is at most 1

a + 1
q which is at most 1

2 + 1
q . Otherwise we are in the case above with λ 6= ∆E .

In a similar fashion we can remove the case in which λ = λ′ = ∆E but ∆E does not divide ∆t1.
Now consider the case λ = λ′ = ∆E with ∆E |∆s1 and ∆E |∆t1. Note that this implies that

∆E |∆s2 and ∆E |∆t2as well.
Define x1 = ∆s1/∆E , ρ1 = ∆s2/∆E , α1 = (eŝ1− ês1)/∆E , ρ′1 = (eŝ2− ês2)/∆E , y1 = ∆t1/∆E ,

σ1 = ∆t2/∆E , γ1 = (et̂1 − êt1)/∆E and τ1 = (et̂2 − êt2)/∆E .
Define x′1 = x1 mod N and y′1 = y1 mod N . Note that by definition

c
x′1
1 Γ

y′1κN = c2 mod N2

for some κ as needed. And gx1 = X ∈ G. So we have extracted the required x, y. As in the previous
proof we can establish that x1, x

′
1 ∈ [−q3, q3].

Honest-Verifier Zero-Knowledge. The simulator proceeds as in [29] and in the previous ZK
proof.

A.3 Respondent ZK Proof for MtA

This proof is run by Bob (the responder) in the MtA protocol. It is a simpler version of the previous
protocol where Bob only proves that x is small (without proving that it is the discrete log of any
public value).

The input for this proof is a Paillier public key N,Γ and two values c1, c2 ∈ ZN2 .
The Prover knows x ∈ Zq, y ∈ ZN and r ∈ Z∗N such that c2 = cx1Γ

yrN mod N2 where q is the
order of the DSA group.

At the end of the protocol the Verifier is convinced of the above and that x ∈ [−q3, q3].

– The Prover selects α ∈R Zq3 , ρ ∈R ZqÑ , ρ′ ∈R Zq3Ñ , σ ∈ ZqÑ , β ∈R Z∗N , γ ∈R Z∗N and
τ ∈R ZqÑ .

The Prover computes z = hx1h
ρ
2 mod Ñ , z′ = hα1h

ρ′

2 mod Ñ , t = hy1h
σ
2 mod Ñ , v = cα1Γ

γβN mod
N2, and w = hγ1h

τ
2 mod Ñ .

The Prover sends z, z′, t, v, w to the Verifier.
– The Verifier selects a challenge e ∈R Zq and sends it to the Prover.
– The Prover computes s = reβ mod N , s1 = ex+ α, s2 = eρ+ ρ′, t1 = ey + γ and t2 = eσ + τ .

The Prover sends s, s1, s2, t1, t2 to the Verifier.
– The Verifier checks that s1 ≤ q3, hs11 h

s2
2 = zez′ mod Ñ , ht11 h

t2
2 = tew mod Ñ , and cs11 s

NΓ t1 =
ce2v mod N2.

The proof is immediate from the previous one.

