
Refresh When You Wake Up:

Proactive Threshold Wallets with Offline Devices∗

Yashvanth Kondi
ykondi@ccs.neu.edu

Northeastern University

Bernardo Magri
magri@cs.au.dk

Aarhus University

Claudio Orlandi
orlandi@cs.au.dk

Aarhus University

Omer Shlomovits
omer@ZenGo.com

KZen Research

January 22, 2021

Abstract

Proactive security is the notion of defending a distributed system against an attacker who compro-
mises different devices through its lifetime, but no more than a threshold number of them at any given
time. The emergence of threshold wallets for more secure cryptocurrency custody warrants an efficient
proactivization protocol tailored to this setting. While many proactivization protocols have been devised
and studied in the literature, none of them have communication patterns ideal for threshold wallets. In
particular a (t, n) threshold wallet is designed to have t parties jointly sign a transaction (of which only
one may be honest) whereas even the best current proactivization protocols require at least an additional
t− 1 honest parties to come online simultaneously to refresh the system.

In this work we formulate the notion of refresh with offline devices, where any tρ parties may proac-
tivize the system at any time and the remaining n− tρ offline parties can non-interactively “catch up” at
their leisure. However, many subtle issues arise in realizing this pattern. We identify that this problem
is divided into two settings: (2, n) and (t, n) where t > 2. We develop novel techniques to address both
settings as follows:

• We show that the (2, n) setting permits a tight tρ for refresh. In particular we give a highly
efficient tρ = 2 protocol to upgrade a number of standard (2, n) threshold signature schemes to
proactive security with offline refresh. This protocol can augment existing implementations of
threshold wallets for immediate use– we show that proactivization does not have to interfere with
their native mode of operation. This technique is compatible with Schnorr, EdDSA, and even
sophisticated ECDSA protocols. By implementation we show that proactivizing two different recent
(2, n) ECDSA protocols incurs only 14% and 24% computational overhead respectively, less than
200 bytes, and no extra round of communication.

• For the general (t, n) setting we prove that it is impossible to construct an offline refresh protocol
with tρ < 2(t−1), i.e. tolerating a dishonest majority of online parties. Our techniques are novel in
reasoning about the message complexity of proactive security, and may be of independent interest.

Our results are positive for small-scale decentralization (such as 2FA with threshold wallets), and negative
for large-scale distributed systems with higher thresholds. We thus initiate the study of proactive security
with offline refresh, with a comprehensive treatment of the dishonest majority case.

∗Research supported by: the Concordium Blockhain Research Center, Aarhus University, Denmark; the Carlsberg Founda-
tion under the Semper Ardens Research Project CF18-112 (BCM); the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement No 803096 (SPEC); the Danish Independent
Research Council under Grant-ID DFF-6108-00169 (FoCC); the Office of the Director of National Intelligence (ODNI), Intelli-
gence Advanced Research Project Activity (IARPA) under contract number 2019-19-020700009 (ACHILLES). This is the full
version of the paper under the same title appearing in the 2021 IEEE S&P Conference [KMOS21].

1

1 Introduction

Threshold Signatures as conceived by Desmedt [Des87] allow the ability to sign messages under a public key
to be delegated to a group of parties instead of a single one. In particular, a subset of these parties greater
than a certain threshold must collaborate in order to sign a message. This primitive finds application in
many scenarios, but more recently it has seen interest from the blockchain community as a method to manage
private keys effectively. From multi-factor authentication to distribution of spending authority, threshold
signature schemes allow cryptocurrency wallets to build resilience against compromise of up to a threshold
number of devices. This is because threshold signature protocols never physically reconstruct the signing
key at a single location, and so an attacker who compromises fewer devices than the signing threshold learns
no useful information to forge signatures.

A long line of works has constructed threshold versions of common signature schemes [GJKR01, ADN06,
Sho00]. Despite the non-linearity of the ECDSA signing equation making its thresholdization challenging,
recent works have seen even threshold ECDSA schemes [GG18, LNR18, DKLs19, DOK+20, CCL+20] enter
the realm of practicality. This has immediate implications for users of the many cryptocurrencies (Bit-
coin, Ethereum, etc.) that have adopted ECDSA as their canonical signature algorithm. Besides ECDSA,
Schnorr [Sch89] and other Schnorr-like signature schemes (eg. EdDSA [BDL+12]) are seeing an increase in
interest from the cryptocurrency community, of which many employ threshold-friendly signing equations.

However threshold signature schemes by themselves do not address a number of security concerns that
arise in real-world deployment. Indeed, all privacy/unforgeability guarantees of such a system are completely
and irreparably voided if an adversary breaks into even one device more than the threshold throughout the
lifetime of the system. A natural question to ask is instead of assuming that an adversary is threshold-limited
to the same devices essentially forever, whether it is meaningful to consider a threshold-limited adversary
with mobility across devices in time. In more detail an attacker may break into different devices in the
system (possibly all of them in its lifetime) however at any given point in time, not more than a threshold
number of them are compromised. This question was first considered by Ostrovsky and Yung [OY91] who
devised the notion of a mobile adversary , which may change which devices are compromised at marked
epochs in time. They found that the trick to thwarting such an adversary is to have each party proactively
re-randomize its secret state between epochs. This technique ensures that the views of different parties at
different epochs in time are independent, and can not be combined to reveal any meaniningful information
about shared secrets by a mobile attacker.

1.1 Proactivizing Threshold Signatures

Proactive Secret Sharing (PSS) as it has come to be known, has seen a number of realizations for different
ranges of parameters since the introduction of the mobile adversary model [OY91]. In fact, even proactive
signature schemes themselves have been studied directly [ADN06, FGMY97]. A naive adaptation of any
off-the-shelf PSS scheme to the threshold signature setting would in many cases yield proactive threshold
signature schemes immediately. However, heavy use of an honest majority by most PSS schemes would
already rule out many practical applications of such an approach. Moreover all such solutions will have
communication patterns that require every party in the system to be online at pre-defined times, at the close
of every epoch, in order to keep the system proactivized and moving forward.

To see why requiring all parties to be online simultaneously is not reasonable especially for threshold
wallets, consider the following scenarios:

• Cold storage: Alice splits her signing key between her smartphone and laptop and has them execute
a threshold signing protocol when a message is to be signed. However if for any number of operational
reasons one of the devices (say her smartphone) malfunctions, the secret key is lost forever and any
funds associated with the corresponding public key are rendered inaccessible. In order to avoid this
situation, Alice stores a third share of the signing key in a secure cold storage server. While this third
share does not by itself leak the signing key, along with the laptop it can aid in the restoration of the
smartphone’s key share when required. In this scenario it would be quite inconvenient (and also defeat

2

the purpose of two-party signing) if the cold storage server has to participate in the proactivization
every time the system needs to be re-randomized; it would be much more reasonable to have the
smartphone and laptop proactivize when required, and send update packages to the server.

• (2,3)-factor authentication: Alice now splits her signing key across her smartphone, laptop, and
tablet so that she must use any two of them to sign a message. Even in this simple use case, having all
of her devices online and active simultaneously (possibly multiple times a day) just so that they can
refresh would be cumbersome. Ideally every time she uses two of them to sign a message, they also
refresh their key shares and leave an update package for the offline device to catch up at its leisure.

• Concurrent use: Alice, Bob, Carol, and Dave are executives at a corporation, and at least two of
them must approve a purchase funded by the company account. This is enforced by giving each of them
a share of the signing key, so that any two may collaborate to approve a transaction. Requiring them
all to be online simultaneously is impractical given their schedules; it would be much more convenient
to have any two of them refresh the system when they meet to sign, and send updates to the others.

Correlated Risks Beyond convenience, there are qualitative security implications for the de-facto stan-
dard pattern of proactivization. In particular, the validity of the assumption that an adversary controls only
up to a threshold number of devices hinges on the risk of compromise of each device being independent.
However having all devices in the system come online at frequent pre-specified points in time and connect
to each other to refresh may significantly correlate their risk of compromise. Instead it would be preferable
that only the minimal number of devices (i.e. the signing threshold) interact with each other in the regular
mode of operation, and enable the system to non-interactively refresh itself.

The ideal communication pattern alluded to above is the following: in a (t, n) proactive threshold signa-
ture scheme, any t parties are able to jointly produce all the necessary components to refresh the system, and
send the relevant information to offline parties. When an offline party wakes up, it processes the messages
received and is able to “catch up” to the latest sharing of the secret.

1.2 Challenges in Realizing this Pattern

While this communication pattern sounds ideal, a whole host of subtle issues arise in potential realizations.
For instance, in the Cold Storage case, how does the server know that the updates it receives are “legitimate”?
An attacker controlling Alice’s smartphone could spoof an update message and trick the server into deleting
its key share and replacing it with junk.

Due to the inherent unfairness of two-party/dishonest majority MPC protocols, an adversary can obtain
the output of the computation while depriving honest parties of it. In this spirit, the smartphone (acting
for the attacker) could work with the laptop until it obtains the “update” message to send to the server, but
abort the computation before the laptop gets it. Now the attacker has the ability to convince the server to
delete its old share by using this message, whereas the laptop has no idea whether the attacker will actually
do this (and therefore doesn’t know whether to replace its own key share).

Implicit in these scenarios is the problem of unanimous erasure:

How can we design a proactivization protocol in which the adversary can not convince an honest
party to prematurely erase its secret key share?

In the (2, 2) case even a network adversary (who does not control either party) can induce premature deletion
by simply dropping a message in the protocol. Moreover is it possible to restrain such a proactivization
procedure to be minimally invasive to the threshold wallet? i.e. native to usage patterns and protocol
structures of threshold wallets.

1.3 Our Contributions

In this work we give a comprehensive treatment of the notion of proactive security with offline-refresh, with
our study progressing in four phases:

3

1. Defining Offline Refresh. We formalize the notion of offline refresh for threshold protocols in the
Universal Composability (UC) framework [Can01], and justify why our definition (unanimous erasure)
is the correct one. Our starting point is the definition of Almansa et al. [ADN06] which we build
on to capture that all parties need not be in agreement about which epoch they are in, and that an
adversary can change corruptions while other parties are offline. Intuitively previous definitions have
had an inherent synchrony in the progress of the system, which we remove in ours and show how to
capture that parties may refresh at different rates.

2. Upgrading (2, n) Schemes. We show how to upgrade (2, n) threshold Schnorr-like signature schemes
to proactive security tailored for use with a threshold wallet, in that it makes use of transactions
posted to the blockchain for synchronization purposes. We make the case in Section 4.2 that the power
of a ledger is necessary for this task. Our refresh protocol adds no extra assumptions, incurs very
little overhead as compared to running the threshold signature itself, and exactly matches the ideal
communication pattern outlined in the previous section.

3. Proactive Multiplication. We construct a mechanism to proactivize OT Extension state. This
allows us to proactivize even threshold ECDSA protocols, which are sophisticated due to the non-
linear signing equation. We prove the efficiency of our construction by means of an implementation,
specifically the overhead incurred in computational time of our refresh procedure is roughly 24% for the
ECDSA protocol of Doerner et al. [DKLs19] and 14% in the case of Gennaro and Goldfeder [GG18],
while the communication round overhead is zero in both cases.

4. Impossibility of Online Dishonest Majority for (3, n) and Beyond. Intuition would strongly
suggest that any (t, n) threshold scheme could also be upgraded to proactive security with offline refresh
in the presence of a dishonest majority online using sufficiently heavy cryptographic hammers. However,
surprisingly we show this intuition to be false; i.e. even assuming arbitrary trusted setup/random oracle
and an ideal ledger, there must be an honest majority online to refresh the system. We prove this result
by developing new elegant techniques to reason about security in this setting.

We therefore formulate the problem of offline refresh and address the most pressing practical and theoretical
questions: the honest majority online case is simple, the (2, n) case permits a novel efficient protocol with
a ledger which we implement, and the (t, n) case for t > 2 must necessarily have an honest majority of
participants online.

Broader Implications Our results can be interpreted as positive for small-scale decentralization, eg.
2FA across personal devices. In particular the (2, n) refresh protocol is readily compatible with existing
implementations of threshold wallets, and essentially comes at only the cost of implementing forward-secure
channels. However our impossibility result rules out this strong form of security for larger scale systems,
where many servers hold shares of a secret with a high reconstruction threshold. In those cases system
designers who desire proactive security must account for the cost of either bringing an honest majority
online, or waiting to hear from all parties before progressing epochs.

1.4 Our Techniques

We first sketch the ideas behind our (2, n) construction, and then discuss how to reason about the general
(t, n) case and show impossibility.

1.4.1 (2, n) Construction

Roughly, our approach is to use private channels to communicate candidate refresh packages, and the public
ledger to achieve consensus on which one to use. We take advantage of the fact that threshold wallets already
rely on posting signatures to a public ledger in order to coordinate these refreshes. Let each party Pi own
point f(i) on a shared polynomial f where f(0) = sk (i.e. standard Shamir sharing of the secret key sk). We

4

have parties generate a candidate refresh polynomial f ′ when they sign a message, associate each signature
with f ′, and “apply” the refresh (i.e. replace f(i) with f ′(i)) when the corresponding signature appears on
the blockchain. While this handles the coordination part, the major issue of verifiably communicating f ′(j)
to offline party Pj remains a challenge. To solve this, we have the online refreshing parties jointly generate
a local threshold signature authenticating f ′ when communicated to each offline party; such a signature can
only be produced by two parties working together, so any candidate f ′ received when offline must have been
created with the approval of an honest party.

Working Around Unfairness Note that this approach is still vulnerable to attacks where the adversary
withholds the threshold signature from an honest party in the protocol; if an online signing protocol aborts,
how does an honest party know if its (possibly malicious) signing counterparty sent f ′ and the corresponding
signature to offline parties? This is an issue that stems from the inherent unfairness of two-party computation.
While this is impossible to solve in general, we observe that most threshold ECDSA/Schnorr signature
protocols are simulatable so the signing nonce R is leaked, but the signature itself stays hidden until the
final round. We exploit this fact to bind each f ′ to R instead of the signature itself; so our proactive version
of threshold ECDSA/Schnorr will proceed as follows:

1. Run the first half of threshold ECDSA/Schnorr to obtain R.

2. Sample candidate f ′, bind it to R, threshold-sign these values and send them to offline parties.

3. Continue with threshold ECDSA/Schnorr to produce the signature itself.

Correspondingly when any signature under R appears on the blockchain, each party searches for a bound f ′

that it can apply. With overwhelming probability there will never be two independently generated signatures
that share the same R nonce throughout the lifetime of the system.

Threshold ECDSA and Multipliers Threshold ECDSA protocols require use of a secure two-party
multiplication functionality FMUL (or equivalent protocol) due to its non-linear signing equation. Indeed,
recent works [GG18, LNR18, DKLs19] have constructed practical threshold ECDSA protocols that make
use of multipliers that can be instantiated with either Oblivious Transfer or Paillier encryption. Using
these multipliers is significantly more efficient in the offline-online model where parties run some kind of
preprocessing in parallel with key generation, and make use of this preprocessed state for efficient FMUL

invocation when signing a message (this is done by all cited works). However as this preprocessed state
is persistent across FMUL invocations, it becomes an additional target to defend from a mobile adversary.
We show how to efficiently re-randomize this preprocessed state for OT-based instantiations of FMUL, and
therefore get offline-refresh proactive security for (2, n) threshold ECDSA in its entirety. Our proactivization
of FMUL makes novel use of the classic technique of Beaver [Bea95] to preprocess oblivious transfer, in
combination with the mechanism we build to deliver updates securely.

1.4.2 General (t, n) Impossibility

We develop a novel technique to reason about the security of protocols that tolerate mobile corruptions. We
first prove that any refresh protocol that tolerates an online dishonest majority must have the property that
a minority of online parties holds enough information to allow any offline party to refresh. Subsequently we
show that a mobile adversary can exploit this property to derive the refreshed private state of a previously
corrupt offline party even after it is un-corrupted. The proof is built up from this underlying insight, discussed
further in Section 10.

1.5 Related Work

The notion of mobile adversaries with a corresponding realization of proactive MPC was first introduced
by Ostrovsky and Yung [OY91]. Herzberg et al. [HJKY95] devise techniques for proactive secret shar-
ing, subsequently adapted for use in proactive signature schemes by Herzberg et al. [HJJ+97]. Cachin et

5

al. [CKLS02] show how to achieve proactive security for a shared secret over an asynchronous network.
Maram et al. [MZW+19] construct a proactive secret sharing scheme that supports dynamic committees,
with a portion of the communication done through a blockchain. For a more comprehensive survey, we refer
the reader to the works of Maram et al. [MZW+19] and Nikov and Nikova [NN05].

Very recently Benhamouda et al. [BGG+20] and Goyal et al. [GKM+20] introduced a protocol in which a
committee (elected from a larger set of parties) runs what is essentially a proactivization with offline-refresh.
However they work in the setting of an honest majority, and their techniques are tailored as such.

The work of Canetti et. al. [CHH00] solves the problem of an offline node regaining the ability to
authenticate its communication after having suffered a break-in. However the settings are incomparable;
our network model is stronger in that we assume authenticated communication (details in Section 4), but
weaker in another dimension as we do not rely on an honest majority among online parties. Our use of the
ledger is merely as a passive public signalling mechanism, and not as interactive party-specific storage (eg.
no issuing of certificates to individual parties).

As discussed earlier, every existing work (including those since the above mentioned surveys) assumes
either that all parties come online [CGG+20], an honest majority of parties collaborate in order to proactivize
the system [BGG+20, GKM+20], or that corruptions are passive [EOPY18]. Additionally they require this
honest majority of parties to come online simultaneously at pre-specified points in time to run the refresh
protocol. As the entire premise of the (t, n) threshold signature setting is that only t parties need be online
simultaneously to use the system,

• For the (2, n) case we impose as a strict requirement that only two parties be sufficient to proactivize
the system. Consequently as it is meaningless to have an honest majority among two parties, we can
not directly apply techniques from previous works to our setting. To our knowledge the conceptual core
of our protocol– a threshold signature (internal to the system) interleaved with a threshold signature
that appears on the blockchain, is novel.

• For the general t > 2 case, we prove that the weakest possible notion of dishonest majority for proac-
tivization, i.e. refresh with 2t− 1 online parties, is impossible to achieve.

Therefore we give a comprehensive treatment of proactivization with an online dishonest majority, which
has not previously been studied in the literature.

1.6 Organization

We first present the definitions we use in Section 2. We then give our formalization of mobile adversaries
and offline refresh in Section 3, following which we detail our threshold signature abstraction in Section 5.
We begin by introducing the protocol to coordinate simple (2,2) key refresh in Section 6, and then give the
extension to (2, n) proactive threshold signatures in Section 7. Following this, we show how to proactivize
every component of the more sophisticated recent ECDSA protocols in Section 8. We demonstrate the
practicality of our protocols by implementation to augment two different ECDSA protocols, the results of
which we present in Section 9. Finally we prove the impossibility of offline refresh with a dishonest online
majority for larger thresholds in Section 10.

2 Preliminaries

Throughout this paper, we fix the corruption threshold as t = 1 and hence formulate all of our definitions
assuming one malicious adversarial corruption.

Network Model We assume a synchronous network, as already required by recent threshold signature
schemes [GG18, LNR18, DKLs19]. For the blockchain model, we follow the synchronous functionality of
Kiayias et al. [KZZ16]. In this functionality, the blockchain only progresses after all parties finish their
current round, therefore parties are always synchronized during the protocol run.

6

Additionally, we make the necessary assumption of proactive channels that support delivery to offline
parties, discussed further in Section 4.1.

Protocol Input/Output Notation for (2, n) setting The (2, n) protocols in this paper are described
for any pair of parties indexed by i, j ∈ [n]. In particular, any two parties Pi, Pj out of a group of n parties
~P can run a protocol π with private inputs xi, xj to get their private outputs yi, yj respectively. For ease of
notation since all of our protocols have the same instructions for each party, we choose to describe them as
being run by Pb with P1−b as the counterparty. The general format will be

yb ← π(1− b, xb)

to denote that Pb gets output yb by running protocol π with input xb and counterparty P1−b. For instance
if π is run between P2 and P6, the protocol as described from the point of view of P6 is interpreted with
b ≡ 6 and 1− b ≡ 2.

Ideal Functionalities We assume access to a number of standard ideal functionalities: FCom (commit-
ment), FRDL

Com-ZK (commited proof of knowledge of discrete logarithm), FCoin (coin tossing), FMUL (two-party
multiplication) given formally in Appendix C.

Adversarial Model We prove our protocols secure in the Universal Composability (UC) framework of
Canetti [Can01]. We give the specifics of our modelling in Section 3.

2.1 Blockchain Model

We detail here the relevant aspects of the underlying blockchain system that is required for our (2, n) protocol.

A Transaction Ledger Functionality A transaction ledger can be seen as a public bulletin board where
users can post and read transactions from the ledger. As it was shown in [GKL15], a ledger functionality
must intuitively guarantee the properties of persistence and liveness, that we informally discuss next.

• Persistence: Once a honest user in the system announces a particular transaction as final , all of the
remaining users when queried will either report the transaction in the same position in the ledger or
will not report any other conflicting transaction as stable.

• Liveness: If any honest user in the system attempts to include a certain transaction into their ledger,
then after the passing of some time, all honest users when queried will report the transaction as being
stable.

We encapsulate the ledger in a functionality GLedger inspired by the functionality of [KZZ16].

On the Supported Type of Ledgers. For simplicity, we present our results on a synchronous public
transaction ledger (e.g., Bitcoin [Nak09] or Ethereum [Woo]) where there is a known delay for the delivery
of messages. We note however that synchrony of the ledger is not a necessary assumption for our protocol.
In fact, any ledger satisfying the standard properties of persistence and liveness as defined in [GKL15]
can be employed by our protocol. As it was shown in [GKL15], Bitcoin satisfies both properties for an
honest majority of mining power under the assumption of network synchrony. However, if one is willing to
trade off the honest majority assumption for a partially synchronous network,1 we point out that partially
synchronous Byzantine Fault Tolerant (BFT) ledgers such as Algorand [CM19] can also be employed by our
protocol due to how we define the corruption model, where the adversary “waits” for a full refresh before
changing corruptions.

1It is a well known fact that it is impossible to achieve consensus on partially synchronous networks under honest major-
ity [DLS88].

7

Without loss of generality we assume that every transaction that is included in the chain becomes final
and will not be rolled-back. For a more detailed discussion we refer the reader to [BMTZ17]. We give a
formal definition of the ledger functionality below.

Functionality 1: GLedger

The functionality GLedger is globally available to all participants. The functionality is parameterized by a function
Blockify, a predicate Validate, a constant T, and variables chain, slot, clockTick and buffer, and a set of parties
P. Initially set chain := ε, buffer := ε, slot := 0 and clockTick := 0.

• Upon receiving (Register, sid) from a party P , set P := {P} ∪ P and if P was not registered before set
dP := 0. Send (Register, sid, P) to A.

• Upon receiving (ClockUpdate, sid) from some party Pi ∈ P set di := 1 and forward (ClockUpdate, sid, Pi)
to A. If dP = 1 for all P ∈ P then set clockTick := clockTick + 1, reset dP := 0 for all P ∈ P and execute
Chain extension.

• Upon receiving (Submit, sid, tx) from a party P , If Validate(chain, (buffer, tx)) = 1 then set buffer :=
buffer||tx.

• Upon receiving (Read, sid) from a party P ∈ {A∪P}, If P is honest then set b := chain else set b := (chain,
buffer). Then return the message (Read, sid, b) to party P .

• Upon receiving (Permute, sid, π) from A apply permutation π to the elements of buffer.

Chain extension: If |clockTick− (T · slot)| > T then set chain := chain||Blockify(slot, buffer) and buffer := ε, and
subsequently send (ChainExtended, sid) to A.

The functionality GLedger is parameterised by a set P of participants P ; for a new participant to join
the protocol it must send a message Register to the GLedger functionality. We parameterise GLedger by a
constant T that denotes the gap in clock tick units between two subsequent slots in the ledger. Without
loss of generality, one could assume the existence of a function Tick2Time that maps clock ticks to physical
time, in the same spirits of [KZZ16]. For concreteness, in such a case, the value of T would be 10 minutes
in Bitcoin.

The functionality GLedger is synchronous, and the clockTick variable is incremented only after all the
parties send a message ClockUpdate to GLedger. A new block is created and appended to the chain only after
T clock ticks have elapsed since the last block creation; in the meantime, parties can submit new transactions
to the ledger with the message Submit, and read all the contents of the ledger with the message Read. The
adversary A can permute the contents of the current transaction buffer, which translates to rearranging the
order of the transactions that will be included in the next block.

We define the predicate Validate that validates the transactions contents and format against the current
chain before including it in the transactions buffer. In existing systems such as Bitcoin, the Validate predicate
checks the signature of the user spending funds. The function Blockify, as in [KZZ16], handles the processing
of the transaction buffer and “packs” it nicely into blocks.

Global Functionality The simulator for our protocol will not be able to act on behalf of GLedger. In
particular the simulator is only able to use the functionality with the same priviliges as a party running the
real protocol.

2.2 Miscellaneous

We use (G, G, q) to denote a curve group; the curve G is generated by G and is of order q. Throughout the
paper we use additive notation for curve group operations.

8

Lagrange Coefficients λji (x), λij(x) are the Lagrange coefficients for interpolating the value of a degree-1
polynomial f at location x using the evaluation of f at points i and j. In particular,

λji (x) · f(i) + λij(x) · f(j) = f(x) ∀x, i, j ∈ Zq

Each λji (x) is easy to compute once i, j, x are specified.

Signature format A signature under public key pk comprises of (R, σ) where R ∈ G and σ ∈ Zq. Note
that in practice, some ECDSA/Schnorr implementations will only contain the x-coordinate of R instead of
the whole value. This is only done for efficiency reasons with no implications for security, and does not affect
compatibility with our protocols.

3 Defining Offline Refresh

A notion of offline refresh that is not a priori too restrictive or offers too weak a security guarantee is tricky
to define. Existing definitions (eg. [ADN06]) require that the refresh procedure always terminate successfully
when honest parties receive the instruction. This can be viewed as the proactive analog of the well-studied
MPC notion of Guaranteed Output Delivery (GOD). It is immediate from foundational results on dishonest
majority coin tossing [Cle86] that if there is no honest majority involved in the refresh procedure that
achieves GOD, then the resulting randomness for proactivization is succeptible to unacceptable bias.

One may consider instead a proactive analog of the MPC notion of security with abort. This notion
allows the adversary to abort the computation if it so desires, possibly receiving output while depriving
honest parties of it. Efficient dishonest majority MPC protocols that achieve security with abort are known
in the literature [DPSZ12, KOS16] indicating that this notion may be the correct one.

However one must be careful when defining exactly what power to allow the adversary in aborting the
refresh procedure. Security with abort in the standard MPC setting comes with a fine-grained separation
between selective and unanimous abort [FGH+02], the difference being that in the former some honest
parties may get output while others not, while in the latter all honest parties agree on whether or not to
abort. In standard MPC protocol design the choice between these two security notions offers a meaningful
tradeoff: selective abort while offering strictly weaker security is sufficient for many applications, and is
much more efficient in round complexity and/or use of broadcast [GL05]. When translated to the setting
of proactive security however we argue that this distinction is much more drastic, to the point of making
selective abort patently undesirable.

Refresh with selective abort is insufficient Consider the following adaptation of security with selective
abort: at the end of the refresh protocol, the adversary has the power to choose exactly which (honest)
parties successfully advance to the next epoch. This gives the adversary the power to execute attacks on
the honest parties’ private state that were not feasible without the proactivization protocol. In particular
an adversary could for instance convince one half of the honest parties to advance to the next epoch while
the remaining honest parties do not. As the parties that advance erase their state from the previous epoch,
their secrets will no longer be correlated with the parties that do not advance. This means that even if the
system has an honest majority of parties (which in the static setting means the shared secret can always be
reconstructed/used if desired), the refresh procedure gives the adversary a window to throw the parties out
of sync and ‘erase’ the common secret from the system’s distributed state.

Concretely this could translate to attacks where a single malformed message or network issue causes a
threshold wallet to permanently erase the common secret key, which in many cases could mean an irreversible
loss of funds.

Refresh with unanimous erasure We settle on ‘unanimous erasure’ as the correct definition for proactive
security, as the analog of security with unanimous abort. Informally, this means that the adversary has the
power to decide whether or not to move to the next epoch, but crucially all honest parties agree on the epoch

9

with the caveat that they may not be activated synchronously. Offline refresh is captured by allowing the
adversary to advance the epoch arbitrarily many times (and even change corruptions) without activating all
honest parties, however any honest party if activated must ‘catch up’ non-interactively to the current epoch.

Corruption Caveats Defining a meaningful model that allows different parties to stay “offline” (and
therefore effectively exist in different epochs at the same time) while simultaneously honouring the assumption
that only a threshold number of parties are corrupt at any given epoch requires particular care. We handle
this issue by requiring that the adversary allows a party to “update” before corrupting it. While this appears
to weaken the model, a definition without this restriction would be inherently unachievable, as an adversary
would be able to effectively “travel in time”. For instance, if some party P is offline from epoch i onward,
an adversary who corrupts it after the the system has progressed to epoch i + 1 will obtain this party’s
state at epoch i even after that epoch has passed. This would be problematic if the adversary had already
corrupted (and subsequently uncorrupted) t − 1 different parties at epoch i, as gaining P ’s state for epoch
i will completely reveal the system’s secrets, all without violating the assumption that only t − 1 parties
may be corrupt at any given point in time. See the paragraph on Corruptions in the formal definition that
follows for further discussion.

Parameters The system consists of n parties, of which t are necessary to operate by accessing the secret.
The adversary may corrupt at most t− 1 parties. The refresh procedure is run by activating tρ parties.

With these security notions in mind, we formalize the definition of proactive security with unanimous
erasure and offline refresh in the UC model, and defer the technical details to Appendix D.

4 Instantiating Offline Refresh

With the model and definitions in place, we now incrementally work towards our protocol via a sequence of
stepping stones to introduce which tools we use and why.

4.1 Simple Honest Majority Instantiation

We begin by sketching a ‘baby protocol’ for proactive secret sharing with tρ = 2t − 1 and n = tρ + 1, i.e.
where the refresh protocol is run by an honest majority of online parties and one party (labelled Poff) stays
offline.

Network It is immediate that a necessary underlying assumption is a forward secure channel that supports
delivery to offline parties. Formally, this is captured by having offline parties accumulate messages in a buffer
that they read when they become online. In practice an offline party may not literally be disconnected from
the network and need a buffer, just that the refresh protocol does not require its participation. Alternatively
message delivery may be aided by a server as in the Signal protocol [MP, ACD19]. We assume that the tρ
online parties share a broadcast channel (which is not necessarily visible to Poff).

Cryptographic tools As a parameter of the protocol, parties agree on an elliptic curve G generated by
G and of order q, where the Discrete Logarithm problem is assumed to be hard. We assume two protocol
primitives:

• πDKG
Setup is a protocol where at the end each party Pj holds skj = f(j) ∈ Zq where f is a degree
t − 1 polynomial with the common secret defined as sk = f(0). Additionally every party knows
pkj = F (j) = f(j) ·G for each j ∈ [n]. This is a common tool [Fel87, Ped91] and we recall a canonical
instantiation in Appendix B.

• Reshare(i) is a protocol run by tρ parties each of whom have local secret shares f(j) and public shares
F (j) as created by πDKG

Setup above, in order to create a fresh and independent sharing of the same format

10

where the secret is f(i). In particular, at the end of Reshare(i), each party Pj holds f ′(j) ∈ Zq where
f ′ is a degree t − 1 polynomial with f ′(0) = f(i). This is a common tool as well, and so we refer the
reader to Gennaro et al. [GRR98] for further details.

As before, let off = tρ + 1 index the offline party. The refresh protocol is run among tρ online parties as
follows:

1. Parties P1, · · ·Ptρ run Reshare(0) in order to obtain fresh shares the secret key, i.e. they agree on a
public degree t− 1 polynomial F over G and each Pj obtains f(j) such that f(j) ·G = F (j). It holds
that F (0) = pk. They overwrite skj = f(j) and pkj = F (j) for each j ∈ [n].

2. They then run Reshare(off) to jointly sample a fresh degree t− 1 polynomial f ′ such that f ′(0) = skoff

and each Pj knows f ′(j) and every public F ′(j) = f ′(j) ·G.

3. Each Pj for j ∈ [tρ] sends ~pk = (pkj)j∈[tρ], f
′(j), F ′ privately to Poff .

It holds that since there are t honest parties who execute the final step, upon waking up Poff will find at
least t messages that agree on ~pk, F ′ accompanied by as many correct evaluations f ′(j) which can be verified

by checking f ′(j) ·G ?
= F ′(j). Note that since there are at most t − 1 malicious parties, they can’t collude

to create a sufficiently large set to fool Poff . It is immediate that Poff can therefore interpolate the correct
skoff and ‘catch up’ on all the refreshes that it missed. This protocol can easily be extended for an arbitrary
number of offline parties by generating a new reshared polynomial for each of them.

Hence we have shown that offline refresh is easy to satisfy in the presence of an online honest majority.

4.2 Dishonest Majority with Offline Broadcast

Folklore techniques such as Cleve [Cle86] give strong evidence that unanimous erasure in a (2, 3) system is
impossible to achieve over private channels alone. We give a rough sketch here as to why this is the case.

Consider a system comprising P0, P1, Poff in which Poff is offline, one of P0 or P1 may be corrupt, and the
honest party and Poff must either agree on a random bit (successful termination) or agree to abort. The non-
degeneracy requirement is that an honest execution does not induce an abort. Additionally the parties have
access to arbitrary correlated randomness generated in some offline phase, which rules out direct application
of the t < n/3 consensus lower bound [PSL80]. This system and its constraints captures a simplified notion
of unanimous erasure.

We will argue that if P0 is corrupt, then P1 and Poff can not meet the constraints of the system. Observe
that in the event of successful termination the private communication from P0 to Poff is by itself sufficient
to ‘convince’ Poff not to abort; if this were not true then a corrupt P1 could simply erase its entire private
channel, which forces Poff to abort while honest P0 who is unaware of this terminates successfully. We call
a transcript from either one of P0 or P1 to Poff as ‘convincing’ if it induces Poff to terminate successfully
with an output bit instead of aborting. Without loss of generality there must be some round in the protocol
where P0 gains the ability to produce a convincing transcript, but P1 has not yet acquired this ability (either
party having this ability from round 0 would clearly admit trivial attacks). Therefore if P0 simply halts the
protocol with P1 at this point, P1 will have no way of knowing whether P0 will choose to convince Poff to
abort or to terminate successfully.

Offline Broadcast In order to overcome this challenge we introduce a powerful notion of an ‘offline
broadcast channel’, which is a broadcast channel shared by P0, P1, Poff but crucially is invisible to the
adversary if none of the parties are corrupt. Our final protocol will not use so strong a tool, but it provides
an instructive stepping stone.

Leaking the Difference Polynomial We observe that any proactivization protocol where an adversary
corrupts t parties has the following property: define fδ(i) = f ′(i) − f(i), i.e. the polynomial that encodes
the difference between old and new shares. Given f(i), f ′(i) for any t − 1 values of i (which the adversary

11

has by virtue of corrupting t − 1 parties) one can compute fδ(x) for any x. This is because fδ(0) = 0 (as
f(0) = f ′(0)) and fδ is a degree t− 1 polynomial of which one now has t points.

Given an offline broadcast channel, designing a refresh protocol for P0, P1, Poff using the above observation
is as simple as sampling the difference polynomial on the broadcast channel. In particular the refresh protocol
proceeds as follows:

1. P0 samples a uniform fδ,0 and offline-broadcasts a commitment to fδ,0.

2. P1 samples a uniform fδ,1 and offline-broadcasts it.

3. P0 decommits fδ on the offline-broadcast channel.

4. Each party (either immediately, or upon waking up) defines fδ = fδ,0 + fδ,1 and updates its local share
as f ′(i) = f(i) + fδ(i)

It is clear that the above offline refresh protocol tolerates a mobile malicious adversary that corrupts at
most one party at any given time (which is optimal in a t = 2 system). In particular the offline broadcast
channel allows for the following properties:

• The online parties and Poff use the same criteria to compute fδ and so are always in agreement.

• Since the offline broadcast channel is invisible to the adversary when switching corruptions, the uniform
choice of fδ ensures that the resulting refreshed polynomial is distributed independently of any parties’
view from earlier.

Unfortunately this offline broadcast primitive is an unreasonably strong assumption to make in practice.
Broadcast is either implemented via interactive protocols, or inherently public when using a ledger/blockchain.
We therefore carefully design a protocol that somewhat achieves the effect of this offline broadcast channel;
we will use private channels to communicate candidate fδ values along with a public ledger to reach agreement
on whether or not to use them, and rely on the intrinsic entropy of certain common threshold signatures to
bind the public and private components.

A Note on Parameters As our subsequent constructions are explicitly for t = tρ = 2, we drop the t, tρ
notation until we revisit the general multiparty setting in Section 10.

5 Threshold Signature Abstraction

A threshold signature scheme [Des87] allows the power of producing a digital signature to be delegated to
multiple parties, so that a threshold number of them must work together in order to produce a signature.
Specifically a (t, n) signature scheme is a system in which n parties hold shares of the signing key, of which
any t must collaborate to sign a message. In this section we focus on (2, n) threshold versions of the
ECDSA [Kra93] and Schnorr [Sch89] Signature schemes. As our techniques are general and not specific to
any one threshold signature scheme, we use an abstraction of such protocols for ease of exposition.

5.1 Abstraction

We assume that a (2, n) threshold signature over group (G, G, q) can be decomposed in a triple of algorithms
(πDKG

Setup,πR
Sign,πσSign) of the following formats:

• (ski ∈ Zq, pk ∈ G)← πDKG
Setup(κ)

This protocol is run with n parties and has each honest party Pi obtain public output pk and private
output ski. In addition to this, there must exist a degree-1 polynomial f over Zq such that ∀i ∈ [n],
ski = f(i).

12

• (R ∈ G, stateb ∈ {0, 1}∗)← πR
Sign(pk, skb, 1− b,m)

Run by party Pb with P1−b as counterparty, to sign message m. Both parties output the same R when
honest, with private state stateb.

• (σ ∈ Zq)← πσSign(stateb)
Completes the signature started by πR

Sign when both parties are honest, i.e. σ verifies as a signature on
message m with R as the public nonce and pk as the public key.

Note that πDKG
Setup captures a specific kind of secret sharing, i.e. the kind where the signing key is Shamir-

shared among the parties. Multiplicative shares for instance are not captured by this abstraction. The
(2,2) threshold ECDSA protocols of Lindell [Lin17] and Castagnos et al. [CCL+19] are not captured by our
abstraction for this reason. Additionally signature schemes that do not have randomized signing algorithms
such as BLS [BLS04] can not be decomposed as per this abstraction.

Finally these protocols must realize the relevant threshold signature functionality. In particular let
Sign ∈ {SignHECDSA,SignHSchnorr} where

SignHECDSA(sk, k,m) =
H(m) + sk · rx

k

SignHSchnorr(sk, k,m) = H(R||m) · sk + k

where rx is the x-coordinate of k ·G in the ECDSA signing equation. We therefore define functionality Fn,2Sign

to work as follows:

Functionality 2: Fn,2Sign

This functionality is parameterized by the party count n, the elliptic curve (G, G, q), a hash function H, and
a signing algorithm Sign. The setup phase runs once with n parties, and the signing phase may be run many
times between (varying) subgroups of parties indexed by i, j ∈ [n].

Setup On receiving (init) from all parties,

1. Sample and store the joint secret key,
sk← Zq

2. Compute and store the joint public key,
pk := sk ·G

3. Send (public-key, pk) to all parties.

4. Store (ready) in memory.

Signing On receiving (sign, idsig, (i, j),m) from both parties indexed by i, j ∈ [n] (i 6= j), if (ready) exists in
memory but (complete, idsig) does not exist in memory, then

1. Sample k ← Zq and store it as the instance key.

2. Wait for (get-instance-key, idsig) from both parties Pi, Pj .

3. Compute
R := k ·G

and send (instance-key, idsig, R) to parties Pi, Pj . Let (rx, ry) = R.

4. Wait for (proceed, idsig) from both parties Pi, Pj .

5. Compute
σ := SignH(sk, k,m)

6. Send (signature, idsig, σ) to both parties Pi, Pj as adversarially-delayed private output.

7. Store (complete, idsig) in memory.

13

To make concrete the role of each protocol (πDKG
Setup,πR

Sign,πσSign), we restrict access of their corresponding
simulators (SDKG

Setup,SR
Sign,SσSign) to Fn,2Sign. Specifically SDKG

Setup can only send (init) on behalf of a corrupt party

and receive (public-key, pk) in response. The messages (sign, idsig, (i, j),m) and (get-instance-key, idsig)
can be sent and (instance-key, idsig, R) received only by SR

Sign. Finally (proceed, idsig) can be sent and
(signature, idsig, σ) received only by SσSign.

An implication of this restriction is that πR
Sign has to be simulatable without the signature σ, therefore it

cannot leak any information about this value. (The approach of splitting the simulator into several simulators
to limit what kind of information can be leaked in different stages of the protocol has been used before e.g.,
in secret-sharing based MPC protocols to claim that the protocol does not leak any information about the
output until the reconstruction phase performed in the last round of the protocol). This abstraction was
chosen deliberately to enforce this property; one of our key techniques in this work (Section 7) relies on πR

Sign

keeping σ hidden.

Threshold Schnorr We recall a folklore instantiation of Fn,2Sign for SignSchnorr in Appendix B (note that
this also works for EdDSA).

Threshold ECDSA We note that the recent protocols of Gennaro and Goldfeder [GG18], Lindell et
al. [LNR18], and Doerner et al. [DKLs19] for SignECDSA can also be cast in the above framework if required.
However due to the non-linearity of SignECDSA the corresponding realization of Fn,2ECDSA requires use of a
multiplication functionality FMUL (or equivalent protocol). Since FMUL is expensive to instantiate for one-
time use, these threshold ECDSA protocols run some preprocessing for FMUL in parallel with πDKG

Setup and
make use of this preprocessed state for more efficient online computation. As this adds additional persistent
state to be protected against a mobile adversary, we need to deal with it carefully. We discuss this in further
detail and give an efficient solution to this problem in Section 8.

6 Coordinating Two Party Refresh

As the final protocol combines two independent concepts: using the blockchain for synchronization, and
authenticating communication to offline parties, we first present a base protocol for the former for a (2, 2)
access structure and augment it with the latter to obtain a (2, n) protocol. In this section, we describe the
malicious secure protocol for two parties to coordinate an authenticated refresh of the secret key shares.
The (2, 2) protocol is described with Shamir secret shares (points on a polynomial) rather than just additive
shares so as to allow for a smoother transition to the (2, n) setting.

Intuition The two parties begin by running the first half of the threshold signing protocol πR
Sign to obtain

the signing nonce R that will be used for the subsequent threshold signature itself. They then sample a new
candidate (shared) polynomial f ′ by publicly sampling the difference polynomial fδ and store their local
share sk′b = f ′(b) tagged with R and the epoch number epoch in a list rpool. Specifically rpool is a list of
(R, sk′b, epoch) values that are indexed by R as the unique identifying element. Following this, they complete
the threshold signing by running πσSign and a designated party sends the resulting signature (and message)
to GLedger, i.e. posts them to the public ledger.

Protocol 1: π(2,2)
ρ-sign

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb, P1−b (recall b ∈ {1, 2} is the index of the current party and 1 − b is a shorthand for the index of
the counterparty)
Ideal Oracles: FRDL

Com-ZK, GLedger

Inputs:

• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share in the exponent

14

pkb = λ1−b
b (0) · F (b) where F is the polynomial over G passing through (0, pk) and (b, f(b) · G), epoch

index epoch ∈ Z+

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

1. Tag R from Threshold Signature:

i. Run the first half of the threshold signing protocol

(R, stateb)← πR
Sign (skb, 1− b,m)

2. Sample New Polynomial:

i. Send (sample-element, idcoin, q) to FCoin and wait for response (idcoin, δ)

ii. Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

iii. Compute
sk′b = skb + fδ(b)

3. Store Tagged Refresh:

i. Retrieve Epoch index epoch

ii. Append (R, sk′b, epoch) to rpool

4. Complete the threshold signature protocol by running σ ← πσSign

5. If σ 6= ⊥ then set tx = (m,R, σ) and send (Submit, sid, tx) to GLedger

Note that in Step 5 it is sufficient for only one party to send the transaction tx to the ledger.
While the above protocol generates candidate refresh polynomials, choosing which one to use from rpool

(and when to delete old shares) is done separately. The idea is that when a new block is obtained from
GLedger the parties each scan it to find signatures under their shared public key pk. The signatures are cross-
referenced with rpool tuples stored in memory by matching R (no two signatures will have the same R) and
the ones without corresponding tuples are ignored. If any such signatures are found, the one occurring first
in the block is chosen to signal the next refresh; in particular the corresponding sk′b overwrites skb stored in
memory, rpool is erased, and the epoch counter is incremented.

Protocol 2: π(2,2)
ρ-update

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pi (local refresh protocol)
Ideal Oracles: GLedger

Inputs: Epoch counter epoch, a list rpool = {(epoch, sk′i, R)}, private key share ski.

1. Send (Read) to GLedger and receive (Read, b). Set BLK to be the latest block occurring in b

2. Search for the first signature (σ,R) occurring in BLK under pk such that ∃(R, sk′i, epoch) ∈ rpool

3. Overwrite ski = sk′i and erase rpool

4. Set epoch = epoch + 1

It is clear that this protocol achieves all desired properties when both parties are honest. We give a proof
of the extended (2, n) protocol directly in the next section. However we make a few observations at this
point that will aid in building the proof for the extended protocol.

15

Before and after a refresh the view of an adversary corrupting Pb when epoch = x is completely
independent of the view when corrupting P1−b after epoch = x + 1. This is clear as polynomials f and f ′

are independently distributed, and so skb = f(b) can not be meaningfully combined with sk′1−b = f ′(1− b).

No two entries in rpool will have the same R by virtue of each R being chosen uniformly for each
entry, the likelihood of there being two entries with the same R value in rpool is negligible, with about

√
q

signatures having to be generated before a collision occurs.

7 (2, n) Refresh With Two Online

In this section, we give the malicious secure protocol for two online parties to coordinate an authenticated
refresh of the secret key for arbitrarily many offline parties. We now describe how to ensure that offline
parties can get up to speed upon waking up, crucially in a way that every party is in agreement about which
polynomial to use so that ski erasures are always safe.

Goal Observe that if every party is in agreement about rpool, then the rest of the refresh procedure is
deterministic and straightforward. Therefore it suffices to construct a mechanism to ensure that for each (R,
sk′b, epoch) tuple an online party Pb appends to its rpool, each offline party Pi is able to append a consistent
value (R, sk′i, epoch) to its own rpool. Here ‘consistent’ means that the points (0, sk), (b, sk′b), (i, sk′i) are
collinear.

An Attempt at a Solution We first note that since either one of the online parties Pb may be malicious
and therefore unreliable, it simplifies matters to design the refresh protocol so that they both send the same
message to an offline Pi. The message itself should deliver fδ(i) (so that Pi can compute sk′i) along with R.
Simultaneously it must be ensured that a malicious party is unable to spoof such a message and confuse Pi.

In order to solve this problem, we take advantage of the fact that the parties already share a distributed
key setup; as any two parties must be able to sign a message in a (2, n) threshold signature scheme, we take
advantage of this feature to authenticate sent messages with threshold signatures internal to the protocol.
In particular, when any Pb, P1−b agree on an entry (R, skb) to add to rpool, they also produce a threshold
signature z under the shared public key pk authenticating this entry. Each Pb is instructed to send the
new rpool entry accompanied by its signature z to every offline party. If at least one of Pb, P1−b follows the
protocol (note that only one may be corrupt), every offline party will have received the new rpool entry when
it wakes up. Additionally due to the same reason that (2, n) signatures are unforgeable by an adversary
corrupting a single party, such an adversary will be unable to convince any offline Pi to add an entry to rpool
that was not approved by an honest party. An implication of this unforgeability feature is that an offline
party can safely ignore received messages that are malformed.

A Subtle Attack Again the inherent unfairness of two-party computation stands in the way of achieving a
consistent rpool. In particular an adversary corrupting P ∗b may choose to abort the computation the moment
she receives the internal threshold signature z, denying the online honest party P1−b this value and therefore
removing its ability to convince its offline friends to add the new rpool entry. This is a dangerous situation,
as P ∗b now has the power to control whether the offline parties update rpool or not, i.e. by choosing whether
or not to send the new rpool entry (which it can convince offline parties to use as it has z). While this
will not immediately constitute a breach of privacy, the fact that honest parties do not agree on rpool could
violate unanimous erasure; at best this requires all honest parties to come online to re-share the secret, and
at worst this could mean that the secret key is lost forever (e.g. in the (2,3) cold storage use case).

Our Solution This is where it is crucial that the first half of the threshold signing protocol (πR
Sign) is

simulatable without the signature σ itself; in fact it is the entire reason for this choice of abstraction.
Assume that P1−b updates its rpool with the new value before even producing z. Following this, P1−b will

16

refuse to instruct Fn,2Sign to reveal the signature σ until it is in possession of the local threshold signature z to
send to offline parties. There are now two choices that P ∗b has when executing the attack described above:

• Update rpool of offline parties: i.e. the adversary chooses to add (R, fδ) to the rpool of some/all
offline parties. In this case, in order to actually exploit the inconsistency between rpool of different
honest parties, the adversary must trigger a refresh that produces different outcomes for different rpool.
Specifically, the signature σ under public key pk and the nonce R must appear on the blockchain; i.e.
the same R that Pb interrupted signing with P1−b but sent to offline parties. However since protocol
πR

Sign by itself keeps σ completely hidden and P1−b does not continue with πσSign, the task of the adversary
is essentially to produce σ under a specific uniformly chosen R (of unknown discrete logarithm). We
show that this amounts to solving the discrete logarithm problem in the curve G.

• Do not update rpool of offline parties: All honest parties have the same rpool anyway, and there
is no point of concern.

Therefore instead of using complicated mechanisms (eg. forcing everyone to come online, extra messages
on the blockchain, etc.) to ensure that every honest party agrees on the same rpool, we design our protocol
so that any inconsistencies in rpool are inconsequential.

We present the protocol below, which includes some optimizations and notation omitted from the above
explanation.

Protocol 3: π(2,n)
ρ-sign

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb for b ∈ [n]
Ideal Oracles: FRDL

Com-ZK, GLedger, random oracle RO
Inputs:

• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share in the exponent
pkb = λ1−b

b (0) · F (b) where F is the polynomial over G passing through (0, pk) and (b, f(b) · G), epoch
index epoch ∈ Z+

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

1. Tag R from Threshold Signature: (identical to π(2,2)
ρ-sign)

2. Sample New Polynomial: (identical to π(2,2)
ρ-sign)

3. Store Tagged Refresh:

i. Append (R, sk′b, epoch) to rpool

ii. Establish common nonce K ∈ G along with an additive sharing of its discrete logarithm:

a. Sample kb ← Zq, set Kb = kb ·G and send (com-proof, idcom-zk
b , kb,Kb) to FRDL

Com-ZK

b. Upon receiving (committed, 1− b, idcom-zk
1−b) from FRDL

Com-ZK, send (open, idcom-zk
b) to FRDL

Com-ZK

c. Wait to receive (decommitted, 1− b, idcom-zk
1−b ,K1−b ∈ G) from FRDL

Com-ZK

d. Set K = Kb +K1−b

iii. Compute

e = RO(R||K||δ||epoch)

zb = e · skb + kb

iv. Send zb to P1−b and wait for z1−b, upon receipt verifying that

z1−b ·G = e · pk1−b +K1−b

and compute z = zb + z1−b

v. Set msg = (R, epoch, δ,K, z)

vi. For each i ∈ [n] \ {b, 1− b}, send msg to Pi

4. Complete the threshold signature protocol by running σ ← πσSign

5. If σ 6= ⊥ then set tx = (m,R, σ) and send (Submit, sid, tx) to GLedger

17

We now specify the refresh procedure for a party Pi to process its received messages, reconstruct rpool,
and shift to the latest shared polynomial. This refresh procedure is general so that parties who were offline
for a number of epochs can catch up.

Protocol 4: π(2,n)
ρ-update

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pi (local refresh protocol)
Ideal Oracles: GLedger

Inputs: Epoch counter epoch, a list rpool = {(epoch, sk′i, R)}, public key pk, private key share ski (define
pki = ski ·G).

1. For each unique msg received when offline do the following:

i. Parse (R, epoch′, δ,K, z)← msg and if epoch′ < epoch ignore this msg

ii. Compute e = RO(R||K||δ||epoch′) and verify that

z ·G = e · pk +K

iii. Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

and interpolate δi = fδ(i)

iv. If epoch′ = epoch, compute
sk′i = ski + δi

and append (R, sk′i, epoch) to rpool

v. Otherwise epoch′ > epoch so append (epoch′, δi, R) to fpool

2. Send (Read) to GLedger and receive (Read, b) in response. Set BLK to be the latest blocks occurring in b
since last awake, and in sequence from the earliest block, for each (σ,R) under pk encountered do the
following:

i. Find (R, sk′i, epoch) ∈ rpool (match by R), ignore σ if not found

ii. Overwrite ski = sk′i, set epoch = epoch + 1, and set rpool = ∅
iii. For each (epoch, δi, R) ∈ fpool (i.e. matching current epoch) do:

(i) Set sk′i = ski + δi

(ii) Append (R, sk′i, epoch) to rpool

(iii) Remove this entry from fpool

In the above refresh protocol π(2,n)
ρ-update, the set rpool will always be consistent across honest parties (except

for inconsequential differences) and fpool will be empty by the end. This is due to the fact that fpool contains
candidate refresh values intended for epoch values further than the one “caught up with” so far; no honest
party will approve a candidate with a higher epoch counter than its own, and every honest party reaches
the same epoch value upon refresh. Further details can be found in the section addressing non-degeneracy
of the protocol in the proof that follows.

Theorem 7.1. If (πDKG
Setup, π

R
Sign, π

σ
Sign) is a threshold signature scheme for signing equation Sign, and the

discrete logarithm problem is hard in G, then (πDKG
Setup, π

(2,n)
ρ-update) UC-realizes Fn,2Sign in the (GLedger,FRDL

Com-ZK)-
hybrid model in the presence of a mobile adversary corrupting one party, with offline refresh.

Proof. (Sketch) The protocol πDKG
Setup can be simulated the standard way, with the corrupt party Pi’s key share

ski remembered as output. We now describe the simulator S(2,n)ρ-signfor protocol π(2,n)
ρ-sign. This simulator is given

ski as input, and outputs (R, sk′i).

18

Simulator 1: S(2,n)ρ-sign

Parameters: Elliptic Curve Group (G, G, q)
Ideal Oracles Controlled: FRDL

Com-ZK, random oracle RO
Ideal Oracles Not Controlled: GLedger

Inputs:

• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share in the exponent
F (b) = f(b) ·G, epoch index epoch ∈ Z+

• Private: Pb’s key share skb = f(b) ∈ Zq

1. Tag R from Threshold Signature:

i. Simulate the first half of the threshold signing protocol

(R, stateb)← SR
Sign (skb, 1− b,m)

relaying (get-instance-key, idsig) and (instance-key, idsig, R) between SR
Sign and Fn,2Sign when re-

quired.

2. Sample New Polynomial: (identical to π(2,2)
ρ-sign)

i. Sample δ ← Zq and send (idcoin, δ) to Pb on behalf of FCoin

ii. Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

iii. Compute
sk′b = skb + fδ(b)

3. Store Tagged Refresh:

i. Simulate a signature R, δ, epoch under pk1−b:

a. Sample z1−b ← Zq and e← Zq uniformly at random

b. Compute
K = z ·G− e · pk1−b

c. Program RO(R||K||δ||epoch) = e

ii. Establish common nonce K ∈ G:

a. Send (committed, 1− b, idcom-zk
1−b) to P ∗b on behalf of FRDL

Com-ZK

b. Receive (com-proof, idcom-zk
b , kb,Kb) on behalf of FRDL

Com-ZK

c. Set K1−b = K −Kb

d. Send (decommitted, 1− b, idcom-zk
1−b ,K1−b ∈ G) to P ∗b on behalf of FRDL

Com-ZK

e. Wait for (open, idcom-zk) from Pb, upon receipt sending z1−b in response

iii. Wait for zb, upon receipt verifying that

zb = e · skb + kb

4. Simulate the rest of the threshold signature protocol by running SσSign(stateb) relaying (proceed, idsig) and
(signature, idsig, σ) between P ∗b and Fn,2Sign as necessary.

5. If P ∗b asks Fn,2Sign to release σ to P1−b, then set tx = (m,R, σ) and send (Submit, sid, tx) to GLedger

6. Output (R, sk′b)

Simulating π(2,n)
ρ-updateis simple: every time the adversary Z sends a (sign,m, i, j) command to a pair

of honest parties, the simulator obtains a signature R, σ from Fn,2Sign, samples δ ← Zq, and simulates a

19

local signature z under pk to authenticate R, δ, epoch just as in Step i. of Simulator S(2,n)ρ-signabove. It sets
msg = (R, epoch, δ,K, z) and makes msg available to the corrupt party.

We now sketch an argument that the distribution of the real protocol is computationally indistinguishable
from the ideal one.

We can progressively substitute each instance of π(2,n)
ρ-signrun with honest parties belonging to an epoch

with S(2,n)ρ-signrun with Fn,2Sign. The distinguishing advantage of Z at each step is bounded by the advantage

of a PPT adversary distinguishing (πDKG
Setup,πR

Sign,πσSign) from the corresponding ideal executions with Fn,2Sign as

produced by simulators (SDKG
Setup,SR

Sign,SσSign), which is assumed to be negligible. In order to extend this strategy
to a mobile adversary, it suffices to argue that the polynomials f, f ′ used to share sk appear independently
distributed before and after a refresh. This follows immediately from the fact that an adversary who jumps
from party Pi to Pj is given f(i) and f ′(j) but does not see the difference fδ between f, f ′, just as discussed
in the (2,2) case in Section 6.

It remains to be argued that the protocol is not degenerate. The non-degeneracy property is achieved by
fulfilling two important requirements:

System Epoch Increments When the parties executing π(2,n)
ρ-signare honest, the system epoch will always

increment upon the next refresh command, i.e. if π(2,n)
ρ-signis run by honest parties with counter epoch, then

every subsequent execution of π(2,n)
ρ-updateby any party in the system will result in a local epoch counter of at

least epoch + 1. This is easy to see for this protocol, as honest parties executing π(2,n)
ρ-signwill always produce a

signature σ which will subsequently appear on the blockchain (after delay T as per GLedger). Simultaneously
every party will find a corresponding update to rpool sent to it, which will be applied by π(2,n)

ρ-updatewhen σ
appears on the blockchain.

Consistency Every honest party outputs the same epoch counter upon executing π(2,n)
ρ-updatesimultaneously.

As alluded to earlier in Section 7 proving this amounts to showing that the state of rpool maintained by
each honest party differs inconsequentially. In particular, let Pi and Pj be honest parties maintaining rpooli
and rpoolj respectively such that ∃(R, sk′i, epoch) ∈ rpooli but @(R, sk′j , epoch) ∈ rpoolj . First we claim

that (R, sk′i, epoch) can be traced to a unique execution of π(2,n)
ρ-signbetween a corrupt party P ∗b and honest

party P1−b. There are only two alternative events: (1) that there is a collision in R values generated by
two protocol instances (occurs with probability |~m|2/2q where |~m| is the number of messages signed), or
(2) Pi received z authenticating this entry without any honest party’s help in its creation; the exact same
technique to prove (threshold) Schnorr signatures secure can be employed here to construct a reduction to
the Discrete Logarithm problem in curve G (if this event occurs with probability ε then there is a reduction
to DLog successful with probability ε/|~m|). Given that (R, sk′i, epoch) can be traced to a unique execution of
π(2,n)
ρ-signbetween P ∗b and P1−b it must be the case that P ∗b aborted the comptation at Step iv., i.e. P ∗b received
z to authenticate this entry but withheld this value from P1−b (or else Pj would have received this entry
when offline as well due to P1−b). Observe that this inconsistency in rpooli, rpoolj is consequential only if
(σ,R) appears on GLedger, despite the fact that P1−b will not execute πσSignto produce this value. We show
that if this event happens with probability ε then there is an adversary for the DLog problem successful with
probability ε/|~m|. This is because R is chosen uniformly in π(2,n)

ρ-sign(ie. internally by πR
Sign as it realizes Fn,2Sign)

and the task of Z is to produce σ that verifies under uniformly chosen nonce R and public key pk. We can
use such a Z to solve the DLog problem in G as follows:

1. Receive X ∈ G from the DLog challenger.

2. Choose sk← Zq, set pk = sk ·G

3. Run SDKG
Setup for Z with pk programmed to be the public key.

4. For each message m ∈ ~m except one, run S(2,n)ρ-sign as required to simulate π(2,n)
ρ-signwhile also acting on

behalf of Fn,2Sign

5. For one randomly chosen instance of π(2,n)
ρ-sign, use SR

Sign to program X as the signing nonce R.

20

6. If the correct instance of π(2,n)
ρ-signis chosen, P ∗b will abort this protocol before the corresponding σ has to

be released, and yet σ still appears on GLedger

7. If σ is obtained from GLedger, solve for x such that x · G = X as a function of σ, sk as per the signing
equation Sign. This is dependent on the equation Sign itself, but it is straightforward how to retrieve
the instance key x given the secret key sk and signature σ as per SignECDSA and SignECDSA.

The above reduction succeeds when Z induces this event (probability ε) and the correct instance of π(2,n)
ρ-signis

chosen (probability 1/|~m|) bringing the total success probability to ε/|~m|.
As the simulated distribution is indistinguishable from the execution of the real protocol and the protocol

is non-degenerate, this proves the theorem.

An Optimization We note that one can save a query to FCoin and a Zq element from being having to
be sent by defining δ = RO(R||K||epoch) instead of computing it separately from the internal threshold
signature z. As (R,K) guarantee κ bits of entropy, the resulting δ will be distributed uniformly.

8 Proactive (2, n) ECDSA

Computing (2, n) ECDSA signatures is significantly more difficult than Schnorr, due to the non-linear nature
of the ECDSA signing equation. As a result, all such recent threshold ECDSA protocols [GG18, LNR18,
DKLs18, DKLs19] make use of a secure multiplication functionality (or equivalent protocol) FMUL in their
signing phases. If FMUL were to be instantiated independently for each threshold ECDSA signature produced,
we could just use the same strategy as in the previous section, since the πR

Sign protocol would take only
key shares as arguments. However FMUL is expensive to realize for individual invocations, and given that
threshold signature protocols already need a “preprocessing” phase for key generation (ie. πDKG

Setup), all the
cited works make use of this phase to also run some preprocessing for FMUL to make its invocation during
signing cheaper. Therefore, we also need to change how we deal with proactively refreshing the shares. In a
nutshell, the main technical challenge we address in this section is that now the parties, on top of their key
shares, also include in their persistent storage some state information for the FMUL protocol and that this
state is a new target for a mobile adversary. Therefore, the state needs to be refreshed as well.

We start by abstracting the two-party multiplication protocol (πSetup
MUL ,πOnline

MUL) used within ECDSA thresh-
old protocols. The protocols are run by party Pi with Pj as the counterparty as follows,

• (statei,jMUL ∈ {0, 1}∗)← πSetup
MUL (j)

• (ti ∈ Zq)← πOnline
MUL

(
statei,jMUL, xj

)
The pair of protocols (πSetup

MUL ,πOnline
MUL) must realize FMUL. As per the functionality specification, ti + tj =

xi · xj after πOnline
MUL is run, and this can be done arbitrarily many times for different inputs. Every pair of

parties in the system shares an instantiation of FMUL, and so Pi maintains statei,jMUL for each j ∈ [n] \ i.
Therefore in our abstraction for threshold ECDSA protocols (πDKG

Setup, π
Setup
MUL , π

R
ECDSA, π

σ
ECDSA) we include the

state required by Pi for multiplication with Pj as an argument for online signing. We avoid rewriting the

formal abstraction for readability, as it is essentially a reproduction of Section 5 with the inclusion of statei,jMUL

as an argument/output in the correct places.
The same restrictions on the simulators for these protocols hold, see Section 5 for details. It is not hard

to show that the recent protocols of Lindell et al. [LNR18], Gennaro and Goldfeder [GG18], and Doerner et
al. [DKLs19] fit these characterizations. The inclusion of {statei,jMUL}j∈[n] as persistent state that parties must
maintain across signatures creates an additional target that must be defended from a mobile adversary. We
show how here to refresh {statei,jMUL}j∈[n] required by the OT-based instantiation of FMUL (as in Doerner et
al. [DKLs19]) and consequently upgrade compatible threshold ECDSA protocols [DKLs19, GG18, LNR18]
to proactive security.

21

Approach The setup used by the multiplier of Doerner et al. consists of a number of base OTs which
are “extended” for use online [KOS15]. These base OTs are the only component of their multiplier which
requires each party to keep private state. Therefore re-randomizing these OTs in the interval between an
adversary’s jump from one party to the other is sufficient to maintain security. The central idea to implement
this re-randomization is to apply the approach introduced by Beaver [Bea95] of “adjusting” preprocessed
OTs once inputs are known online.

8.1 Proactive Secure Multiplication

We begin by describing how two parties can re-randomize OT itself, and then describe how to apply this
technique to re-randomize OT Extensions.

Re-randomizing Oblivious Transfer Assume that Alice has two uniform κ-bit strings r0, r1, and Bob
has a bit b and correspondingly the string rb. Let rand ← {0, 1}2κ+1 be a uniformly chosen string that is
parsed into chunks r′0, r

′
1 ∈ {0, 1}κ and b′ ∈ {0, 1} by both parties. The re-randomization process for Alice

(Refresh OTA) and Bob (Refresh OTB) is non-interactive (given rand) and proceeds as follows:

1. Refresh OTA ((r0, r1), rand): output r′′0 = rb′ ⊕ r′0 and r′′1 = r1−b′ ⊕ r′1

2. Refresh OTB ((b, rb), rand): output b′′ = b⊕ b′ and r′′b′′ = rb ⊕ r′b′′

3. Alice now holds (r′′0 , r
′′
1) and Bob holds b′′, r′′b′′

It is clear to see that Alice and Bob learn nothing of each other’s private values, only the offsets r′0, r
′
1, b
′

between the new and old ones. Consider the view of a mobile adversary that jumps from one party to the
other.

• Alice → Bob: (r0, r1) before the refresh, and (b′′, r′′b′′) after the refresh.

• Bob → Alice: (b, rb) before the refresh, and (r′′0 , r
′′
1) after the refresh.

Assuming that r′0, r
′
1, b
′ are hidden and that these values are uniformly chosen, in both the above cases the

adversary’s view before and after the refresh are completely independent.

Re-randomizing OT Extensions The persistent state maintained by OT Extension protocols based on
that of Ishai et al. [IKNP03] consists of the result of a number of OTs performed during a preprocessing
phase. Re-randomizing this state can be done by simply repeating the above protocol for each preprocessed
OT instance. Indeed, the instantiation of OT Extension implemented by Doerner et al. is the protocol of
Keller et al. [KOS15] which is captured by this framework.

Re-randomizing multipliers There is no further persistent state maintained across FMUL invocations
by the protocol of Doerner et al. [DKLs19], and so we leave implicit the construction of stateMUL

′ ←
Refresh MUL(stateMUL, rand). The only missing piece is how rand is chosen; in the context of the mul-
tipliers in isolation, this value can be thought of coming from a coin-tossing protocol that is invisible to the
adversary (when neither party is corrupt).

8.2 Multiplier Refresh in (2, n) ECDSA

The previous subsection describes how to realize FMUL with proactive security when a mechanism to agree
on when/which rand to use is available. Fortunately the protocol described in Section 7 provides exactly
such a mechanism for the (2, n) threshold signature setting. We briefly describe how to augment Protocol 7
to produce the randomness rand required to proactivize multipliers in addition to the distributed key shares.

22

(2, n) Offline Refresh The two online parties Pb, P1−b engage in a coin-tossing protocol in the Sample
New Polynomial phase to produce a uniform κ-bit value seed. In the Store Tagged Refresh phase they
include seed to be stored in rpool along with corresponding epoch, sk′b, R (and communicate seed to offline
parties along with these values). If the signature using R is used to signal a refresh, then seed is expanded
by every pair of parties to produce rand as necessary.

We give the entire protocol in Appendix E for completeness.

9 Performance and Implementation

We discuss here the concrete overhead our refresh protocol adds to existing state of the art threshold ECDSA
schemes, as most cryptocurrencies today (Bitcoin, Ethereum, etc.) use ECDSA as their canonical signature
scheme. As at this point we are discussing specific protocols, we make the following observation: In the
protocols of Lindell et al. [LNR18], Doerner et al. [DKLs19], and Gennaro and Goldfeder [GG18] the extra
messages added by π(2,n)

ρ-signcan be sent in parallel with the main ECDSA protocols. In particular, each πR
ECDSA

has at least two rounds which can be used to generate K and δ in parallel, and each πσECDSAhas at least one
round before σ is released during which z can be constructed and verified.

9.1 Cost Analysis

In Table 1 we recall the costs of the (πR
ECDSA,πσECDSA) combined protocols of Doerner et al. [DKLs19] and

Lindell et al. [LNR18] (OT-based) for perspective, and then give the overhead induced by π(2,n)
ρ-sign.

Protocol Rounds EC Mult.s Comm.

Lindell et al. [LNR18] 8 239 195 KiB
Doerner et al. [DKLs19] 7 6 118 KiB

π(2,n)
ρ-signoverhead 0 6 192 Bytes

Table 1: Overhead of applying π(2,n)
ρ-signto proactivize (2, n) ECDSA protocols instantiated with 256-bit curves.

Figures are per-party and do not include cost of implementing proactive channels to communicate 160 bytes
to each offline party every refresh.

Finally the update procedure π(2,n)
ρ-updatefirst requires reading the blockchain and scanning for signatures

under the common public key since last awake– essentially the same operation as required to update balance
of funds available in a wallet. Additionally one has to read messages received when offline and perform two
curve multiplications for each refresh missed.

9.2 Implementation

In order to demonstrate the compatibility and efficiency of our refresh procedure, we implemented it to
augment two different recent threshold ECDSA protocols; specifically those of Doerner et al. [DKLs19] and
Gennaro and Goldfeder [GG18]. We present the results in this section.

We ran both sets of experiments on Amazon’s AWS EC2 using a pair of t3.small machines located in the
same datacenter for uniformity. However as the implementations of the base threshold ECDSA protocols
came from different codebases, we stress that the important metric is the overhead added by our protocol
in each case, and that comparison of the concrete times across the ECDSA protocols is not necessarily
meaningful.

9.2.1 Proactivizing Doerner et al. [DKLs19]

As Doerner et al. natively utilize OT based multipliers, augmenting their threshold ECDSA signing with
our refresh procedure yields a fully proactivized ECDSA wallet. We ran three experiments, during which we
measured wall-clock time, including latency costs, collecting 100,000 samples and averaging them. We first

23

ran their signing protocol unmodified, which took an average of 5.303ms to produce a signature. We then
ran the same protocol augmented with our refresh generation procedure (i.e. π(2,n)

ρ-sign) and found it to take an
average of 6.587ms, i.e. a 24.2% increase. Finally we measured the cost of applying an update upon waking
up (i.e. π(2,n)

ρ-update) to be 0.381ms. Note that this figure does not account for the costs of the proactive channels
or GLedger (which is done anyway to update one’s balance); the point of this benchmark is to demonstrate
the efficiency of applying updates in isolation.

9.2.2 Gennaro and Goldfeder [GG18]

In order to understand the overhead added by the refresh procedure to the communication pattern of a
different (2, n) ECDSA based wallet, we implemented the protocol of Gennaro and Goldfeder [GG18] and
augmented it with our refresh procedure during signing. Note their protocol makes use of a Paillier-based
multiplier which we do not proactivize (see Canetti et al. [CGG+20] for how this can be done), and the cost
of proactivizing an OT-based multiplier is negligible (0.381ms as shown previously). This is representative
of the (2, 3) cold storage application where the multipliers need not be offline-refreshed. We refer to the
original (πR

ECDSA,πσECDSA) as GG and the augmented π(2,n)
ρ-signas GG’.

We did not implement forward secure channels, we instead simulated it with reads from disk. We collected
twenty samples for each configuration and found the average execution time of GG to be 1.433s and that of
GG’ to be 1.635s. In particular, π(2,n)

ρ-signincurs a 14.09% overhead in computation. Note that this figure does
not include network latency, but in the LAN setting the measurements were within margin of error.

The code can be found in https://gitlab.com/neucrypt/mpecdsa/ (full proactivization of [DKLs19] by
Jack Doerner) and https://github.com/KZen-networks/multi-party-ecdsa/tree/gg_pss (proactiviza-
tion in KZen library).

10 General (t, n) Impossibility

We showed in Section 4.1 that an honest majority protocol is easy to construct, and so we assume for the
rest of the discussion that we are in a setting where there is no online honest majority.

Many proactive secret sharing protocols in the literature have fundamentally followed the same approach:
the refresh protocol runs roughly the same protocol that was used to share the secret, with new randomness
incorporated to create an independent sharing of the same value. Therefore the ability to run verifiable
secret sharing (VSS) in a given setting has always translated well to construct a refresh protocol for the
same setting. Non-interactive VSS where only t online parties speak, with resiliency to t − 1 corruptions
are known in the literature [GMW91, Sta96] suggesting that their translation to our setting would yield an
offline refresh protocol.

Unfortunately this intuition turns out to be false. Recall that a central principle in offline refresh is that
all (honest) parties must be in agreement about whether or not to progress to the next epoch, i.e. ‘unanimous
erasure’. We discussed in Section 3 why anything less than this is undesirable, as even a simple network
failure could induce permanent loss of the shared secret. However even this notion turns out to require the
power of an honest majority to realize (barring the (2, n) case) and we give intuition as to why below.

Recall that the refresh protocol πρ is run by tρ online parties, of whom t − 1 may be corrupt, and we
define h = tρ − t + 1 to denote how many are honest. Assume the weakest form of dishonest majority, i.e.
one more corrupt party than honest, so h = t− 2. The communication pattern of a single refresh phase is as
follows: the online parties run πρ, following which each online party sends a message to each of the offline
parties, who upon waking up will be able to catch up to the same epoch. The unanimous erasure property
requires that all honest parties stay in agreement about the epoch; i.e. no one party is falsely convinced to
prematurely erase their old state. Informally, we call a message or set of messages ‘convincing’ if they induce
an offline party to progress to the next epoch and erase their old state.

Relating Unanimous Erasure to πρ It is instructive to view πρ as an MPC protocol to produce a
convincing message for offline parties to progress. As we mandate unanimous erasure, it must never be the

24

https://gitlab.com/neucrypt/mpecdsa/
https://github.com/KZen-networks/multi-party-ecdsa/tree/gg_pss

case that πρ permits an adversary to produce a convincing message while depriving online honest parties of
it. In particular if πρ produces a convincing message then it must be visible and verifiable within the online
honest parties’ joint view (i.e. any subset of size h). Otherwise an adversary could at its discretion choose
to induce an offline party to prematurely erase its state, and honest parties would not be able to tell either
way. This property strongly suggests that πρ must achieve a form of fairness which does not bode well given
that it must tolerate a dishonest majority.

A General Attack Now we hone in on exactly how an adversary can exploit the above facts. Assume
that Poff is an offline party. Observe that the adversary is allowed to corrupt h+1 parties given the dishonest
majority setting, and so it has the budget to keep h online parties corrupt as well as corrupt Poff initially,
say in epoch 0. The adversary un-corrupts Poff and πρ is run successfully to move the system to epoch
1, keeping h parties corrupt (but behaving honestly) through the process. Now recall that the convincing
message to Poff will be visible to any h online parties. Since the adversary has both: the state of Poff from
epoch 0, as well as a ‘convincing message’ addressed to Poff by virtue of corrupting h parties during πρ, it
is able to derive Poff ’s refreshed state for epoch 1 despite not corrupting Poff in that epoch. Now simply
corrupting one additional party in epoch 1 completely reveals the secret, as h+ 2 = t parties’ private states
are available to the adversary for that epoch.

Translating this intuition to a formal proof, or even a well-formed theorem, sees a number of subtle issues
arise. For instance, we can not unconditionally prove that it is impossible to realize Fn,tECDSA with offline
refresh for t > 2; doing so would require proving that ECDSA itself is a signature scheme.2. To see why,
consider a ‘signature scheme’ where the verification algorithm Vrfy outputs 1 on all inputs. Clearly, realizing
a threshold version of this ‘signature scheme’, even with proactive security, is trivial; all parties simply output
“0” when instructed to sign a message, then there is no private state to refresh. Therefore we formulate
our theorem more carefully: we prove that if it possible to offline-refresh a given threshold signature scheme
(t > 2) with a dishonest online majority, then the given signature scheme itself is succeptible to forgery.

We state our theorem in the (GLedger,FRO) model, for the following reasons:

• GLedger represents that this barrier can not be circumvented even with a consensus primitive as strong
as an ideal ledger.

• FRO gives the power to compute any efficiently computable function [CLOS02] and so represents the
ability to produce arbitrary correlated randomness during the preprocessing phase (i.e. during key
generation) and also compute any function securely (albeit without robustness [Cle86]) during the
refresh protocol itself.

Additionally both ideal oracles are trivial to implement when running the environment in a reduction.

Theorem 10.1. Let Sig = (KeyGen,Sign,Vrfy) be a triple of algorithms that satisfies the completeness
definition of signature schemes. If there exists a protocol π(t,n)

ρ-sign in the (GLedger,FRO)-hybrid model that UC-
realizes Fn,tSign with n > tρ ≥ t > 2 in the presence of a mobile adversary actively corrupting t − 1 parties
where tρ < 2(t− 1), then there exists a forger for Sig that succeeds with overwhelming probability.

We delegate the proof to Appendix A. This closes the question of the gap between an honest and a
dishonest majority of corruptions in the setting of offline refresh.

11 Conclusion

With the increasing adoption of threshold wallets comes the need to defend them against mobile attack-
ers. In this work we define an “offline refresh” model for proactivizing threshold wallets with an optimal
communication pattern, and study this fine-grained notion of message complexity in the proactive setting.

2At the moment ECDSA is known to be a signature only in the generic group model [Bro05], and not even in the random
oracle model.

25

We show feasibility of honest majority offline refresh, and give a comprehensive treatment of the dishonest
majority setting: for the (2, n) setting we devise a novel efficient protocol to proactivize many standard
signature schemes with offline refresh, and implement it to show that it adds little overhead in practice.
Finally we show that it is impossible to have the refresh protocol tolerate a dishonest majority of participants,
without having all parties come online at least at some point in each epoch. We develop new techniques to
prove this theorem, and believe that they will find application in reasoning about proactive security in other
contexts. However there may be relaxations of the model, physical hardware assumptions, or nonstandard
trust models that are still reasonable in practice; we leave open the problem of identifying such models and
tailoring constructions for them.

12 Acknowledgements

The authors would like to thank Jack Doerner for augmenting the Threshold ECDSA implementation from
Doerner et al. [DKLs19] with our refresh procedure, and providing us with the benchmarks for that protocol
reported in this paper. They would also like to thank the anonymous reviewers for their feedback, which
was useful in improving the paper.

References

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs,
and modularization for the signal protocol. In EUROCRYPT 2019, pages 129–158, 2019.

[ADN06] Jesús F. Almansa, Ivan Damg̊ard, and Jesper Buus Nielsen. Simplified threshold rsa with
adaptive and proactive security. In EUROCRYPT ’06, pages 593–611, 2006.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89, Sep 2012.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In CRYPTO ’95, pages 97–109, 1995.

[BGG+20] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk, Chengyu
Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain keep a secret? In Rafael Pass
and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th International Conference, TCC
2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part I, volume 12550 of Lecture
Notes in Computer Science, pages 260–290. Springer, 2020.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J. Cryp-
tology, 17(4):297–319, 2004.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction
ledger: A composable treatment. In CRYPTO 2017, pages 324–356, 2017.

[Bro05] Daniel R. L. Brown. Generic groups, collision resistance, and ECDSA. Des. Codes Cryptography,
2005.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, 2001.

[CCL+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Two-party ECDSA from hash proof systems and efficient instantiations. In Advances in Cryp-
tology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2019, Proceedings, Part III, pages 191–221, 2019.

26

[CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Bandwidth-efficient threshold EC-DSA. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, Public-Key Cryptography - PKC 2020 - 23rd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7,
2020, Proceedings, Part II, volume 12111 of Lecture Notes in Computer Science, pages 266–
296. Springer, 2020.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC
non-interactive, proactive, threshold ECDSA with identifiable aborts. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, USA, November 9-13, 2020, pages
1769–1787. ACM, 2020.

[CHH00] Ran Canetti, Shai Halevi, and Amir Herzberg. Maintaining authenticated communication in the
presence of break-ins. J. Cryptology, 13(1):61–105, 2000.

[CKLS02] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous verifiable
secret sharing and proactive cryptosystems. In Proceedings of the 9th ACM Conference on
Computer and Communications Security, CCS 2002, Washington, DC, USA, November 18-22,
2002, pages 88–97, 2002.

[Cle86] R Cleve. Limits on the security of coin flips when half the processors are faulty. In STOC ’86,
1986.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In John H. Reif, editor, Proceedings on 34th Annual
ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages
494–503. ACM, 2002.

[CM19] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor. Comput.
Sci., 777:155–183, 2019.

[Des87] Yvo Desmedt. Society and group oriented cryptography: A new concept. In CRYPTO, 1987.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold ecdsa
from ecdsa assumptions. In IEEE S&P, 2018.

[DKLs19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold ecdsa from ecdsa as-
sumptions: The multiparty case. In IEEE S&P, 2019.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

[DOK+20] Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya Shulman. Se-
curing DNSSEC keys via threshold ECDSA from generic MPC. In Liqun Chen, Ninghui Li,
Kaitai Liang, and Steve A. Schneider, editors, Computer Security - ESORICS 2020 - 25th Euro-
pean Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK, September
14-18, 2020, Proceedings, Part II, volume 12309 of Lecture Notes in Computer Science, pages
654–673. Springer, 2020.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science,
pages 643–662. Springer, 2012.

27

[EOPY18] Karim Eldefrawy, Rafail Ostrovsky, Sunoo Park, and Moti Yung. Proactive secure multiparty
computation with a dishonest majority. In Dario Catalano and Roberto De Prisco, editors,
Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi,
Italy, September 5-7, 2018, Proceedings, volume 11035 of Lecture Notes in Computer Science,
pages 200–215. Springer, 2018.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th Annual
Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October
1987, pages 427–437. IEEE Computer Society, 1987.

[FGH+02] Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, and Adam D. Smith. De-
tectable byzantine agreement secure against faulty majorities. In Aleta Ricciardi, editor, Pro-
ceedings of the Twenty-First Annual ACM Symposium on Principles of Distributed Computing,
PODC 2002, Monterey, California, USA, July 21-24, 2002, pages 118–126. ACM, 2002.

[FGMY97] Yair Frankel, Peter Gemmell, Philip D. MacKenzie, and Moti Yung. Proactive rsa. In Burton S.
Kaliski, editor, CRYPTO ’97, 1997.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extrac-
tors. In CRYPTO, 2005.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In CRYPTO, 1986.

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless
setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 1179–1194, 2018.

[GJKR01] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold DSS
signatures. Inf. Comput., 164(1):54–84, 2001.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In EUROCRYPT 2015, pages 281–310, 2015.

[GKM+20] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan Song. Storing
and retrieving secrets on a blockchain. Cryptology ePrint Archive, Report 2020/504, 2020.
https://eprint.iacr.org/2020/504.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement. J.
Cryptology, 18(3):247–287, 2005.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. J. ACM, 38(3):690–728, July 1991.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In Brian A. Coan and Yehuda Afek,
editors, Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’98, Puerto Vallarta, Mexico, June 28 - July 2, 1998, pages 101–111. ACM,
1998.

[HJJ+97] Amir Herzberg, Markus Jakobsson, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proac-
tive public key and signature systems. In CCS ’97, Proceedings of the 4th ACM Conference on
Computer and Communications Security, Zurich, Switzerland, April 1-4, 1997., pages 100–110,
1997.

28

https://eprint.iacr.org/2020/504

[HJKY95] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret sharing
or: How to cope with perpetual leakage. In Advances in Cryptology - CRYPTO ’95, 15th
Annual International Cryptology Conference, Santa Barbara, California, USA, August 27-31,
1995, Proceedings, pages 339–352, 1995.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers effi-
ciently. In CRYPTO ’03, pages 145–161, 2003.

[KMOS21] Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlomovits. Refresh when you
wake up: Proactive threshold wallets with offline device. In IEEE S&P, 2021.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal
overhead. In CRYPTO, 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 830–842. ACM, 2016.

[Kra93] D.W. Kravitz. Digital signature algorithm, jul 1993. US Patent 5,231,668.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party computation
using a global transaction ledger. In EUROCRYPT 2016, pages 705–734, 2016.

[Lin17] Yehuda Lindell. Fast secure two-party ecdsa signing. In CRYPTO, 2017.

[LNR18] Yehuda Lindell, Ariel Nof, and Samuel Ranellucci. Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. IACR Cryptology ePrint
Archive, 2018:987, 2018.

[MP] Moxie Marlinspike and Trevor Perrin. The double ratchet algorithm, 11 2016. In
https://signal.org/docs/specifications/x3dh/x3dh.pdf.

[MZW+19] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang, Ari Juels, and
Dawn Song. CHURP: dynamic-committee proactive secret sharing. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019, pages 2369–2386, 2019.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing list at
https://metzdowd.com, 03 2009.

[NN05] Ventzislav Nikov and Svetla Nikova. On proactive secret sharing schemes. In Helena Handschuh
and M. Anwar Hasan, editors, Selected Areas in Cryptography, pages 308–325, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended abstract).
In PODC ’91, 1991.

[Ped91] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party. In EUROCRYPT
’91, pages 522–526, 1991.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. J. ACM, 27(2):228–234, 1980.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In CRYPTO, 1989.

29

[Sho00] Victor Shoup. Practical threshold signatures. In Proceedings of the 19th International Confer-
ence on Theory and Application of Cryptographic Techniques, EUROCRYPT’00, pages 207–220,
Berlin, Heidelberg, 2000. Springer-Verlag.

[Sta96] Markus Stadler. Publicly verifiable secret sharing. In Advances in Cryptology - EUROCRYPT
’96, International Conference on the Theory and Application of Cryptographic Techniques,
Saragossa, Spain, May 12-16, 1996, Proceeding, pages 190–199, 1996.

[Woo] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.

A Full Proof of Multiparty Impossibility

Theorem 10.1. Let Sig = (KeyGen,Sign,Vrfy) be a triple of algorithms that satisfies the completeness
definition of signature schemes. If there exists a protocol π(t,n)

ρ-sign in the (GLedger,FRO)-hybrid model that UC-
realizes Fn,tSign with n > tρ ≥ t > 2 in the presence of a mobile adversary actively corrupting t − 1 parties
where tρ < 2(t− 1), then there exists a forger for Sig that succeeds with overwhelming probability.

Proof. We prove this theorem by first constructing an attack on the ‘real’ protocol π(t,n)
ρ-sign, and then using

the simulator SSign to translate this attack to the ideal protocol in order to construct a forger for Sig.
Consider an instantiation with parameters n > tρ ≥ t ≥ 2 such that tρ < 2(t − 1), i.e. less than half

the parties in the refresh protocol are guaranteed to be honest. Define an experiment EXECπ(t,n)
ρ-sign ,Z(1κ) with

environment Zn,tρ as follows:

1. Send init to all parties.

2. Send (refresh, [1, tρ]) to each party Pi where i ∈ [1, tρ].

3. Send (wake) to all parties.

All instructions are implemented with the protocol π(t,n)
ρ-sign. Let τi,j denote the transcript of the private

channel from party Pi to Pj . Let statei denote the private state of party Pi after the init command, and
state′i denote the private state of Pi after the (wake) command (note that state′i is essentially the ‘refreshed’
state for the next epoch). Let ‘off’ index a canonical offline party, say off = tρ + 1. Finally, let pk denote
the public key produced when the init command is run.

We now show how to construct two algorithms: Ext to extract the state of Poff in an epoch of the protocol
where it is not corrupted, and Sign∗ that uses this state in conjunction with t− 1 corrupt parties’ states to
sign any given message.

Lemma A.1. Define τi,j , statei, state′i for i, j ∈ [n], and off as above, and let and h = tρ − t+ 1. There is a
pair of PPT algorithms Ext and Sign∗ defined as follows:

• Ext : (τi,off)i∈[h], stateoff 7→ state′off

• Sign∗ : m, state′off , {state′i}i∈I 7→ σ
Where I ⊂ [n] \ {off} and |I| = t− 1, and m ∈ {0, 1}∗.

It holds that the following probability is overwhelming in κ:

Pr

[
Vrfy (pk,σ,m)=1 :

state′off ← Ext((τi,off)i∈[h], stateoff)
σ ← Sign∗(m, state′off , {state′i}i∈I)

]
Proof. In order to prove this lemma, we will show how to construct these algorithms.

First, some clarification on the parameters: Observe that since the maximum number of corruptions is
t− 1, the value h = tρ − (t− 1) represents the maximum guaranteed number of honest online parties in the
refresh procedure. Additionally since t > btρ/2c + 1 it holds that the adversary may corrupt more than h

30

parties. For ease of exposition, assume 2h + 1 = tρ so that the adversary may corrupt up to h + 1 parties
and only h parties in the refresh protocol are honest in the worst case.

Consider the same experiment EXECπ(t,n)
ρ-sign ,Z∗ run with an alternative environment Z∗n,tρ that corrupts

each Pi for i ∈ [h+ 1, 2h+ 1] and issues the same commands as Zn,tρ , with the caveat that corrupt parties
do not transmit anything on their private channels to Poff , i.e. (τi,off = ⊥)i∈[h+1,2h+1].

Observe that the view of the honest parties P1, · · · , Ph is distributed identically in both executions. This
is because the private channel between each corrupt Pi for i ∈ [h+ 1, 2h+ 1] to Poff is hidden by definition,
and Poff itself does not send any messages in this experiment. This fact has the following implications:

• The transcript of honest parties’ private channels to Poff , i.e. (τi,off)i∈[h] is distributed in both execu-
tions.

• The collection of private states of honest parties at the end of the experiment, i.e. (state′i)i∈[h], is
distributed the same in both experiments. In particular, at the end of both experiments, parties P1,
· · · , Ph successfully advance to the next epoch. As all honest parties must agree on the epoch when
activated, it holds that Poff advances to the next epoch in both experiments. In particular, for any
I ⊂ [n] \ off such that |I| = t− 1, it must hold that implementing the instruction (sign,m, I ∪ {off})
via π(t,n)

ρ-sign produces a valid signature σ of m under pk.

Note that the view of Poff is characterized entirely by the private channel communication from P1, · · · , Ph,
i.e. (τi,off)i∈[h] which is the same in both experiments, and stateoff its own private state from the start of the
experiment (also the same in both experiments).

As we have argued that Poff must successfully advance to the next epoch in both experiments, we are
ready to define Ext and Sign∗ as follows:

• Ext implements the wake instruction for Poff via π(t,n)
ρ-sign, using as input the entire view of Poff , charac-

terized by (τi,off)i∈[h], stateoff , and outputs the private state of Poff for the next epoch, state′off .

• Sign∗ implements the (sign,m, I ∪ {off}) instruction for (Pi)i∈I and Poff via π(t,n)
ρ-sign, using as input the

private states of all of these parties (state′i)i∈I∪{off}

By completeness and unanimous erasure of the protocol π(t,n)
ρ-sign, both the above algorithms succeed with

overwhelming probability. This completes the proof of this lemma.

We now construct the environment that will actually be used by the forger. Consider an instantiation
with the same parameters as earlier, n > tρ ≥ t ≥ 2 such that t > btρ/2c+ 1, i.e. less than half the parties
in the refresh protocol are guaranteed to be honest, and define off = tρ + 1 and h = tρ − t + 1 as earlier.
Define the environment Z∗ controlling adversary A as follows:

1. Instruct A to corrupt P1, P2, · · · , Ph and Poff .

2. Send init to all parties.

3. Instruct A to uncorrupt Poff .

4. Send (refresh, [1, tρ]) to each party Pi where i ∈ [1, tρ].

5. Send (wake) to all parties.

6. Instruct A to corrupt Ph+1.

7. The adversary A outputs its entire view.

8. Z∗ outputs whatever A outputs.

31

Note that unlike the usual specification for the real/ideal process in UC [Can01] in which the environment
only outputs a bit, the output of Z∗ here is a more complex string. This is done for ease of exposition as
the output of Z∗ will be used by the forger (Z∗ acts as a passthrough for the output of A), there is no
meaningful advantage in the real/ideal distinguishing game.

Define τi,j , statei, state′i for i, j ∈ [n] as earlier. The output of A at the end of this experiment is the
complete views of parties P1, P2, · · · , Ph, the view of Poff prior to the refresh instruction, and the view
of Ph+1 after the refresh instruction. These values are sufficiently characterized by (τi,off , statei, state′i)i∈[h],
stateoff , and state′h+1 respectively.

When the instructions of Z∗ are implemented with the protocol π(t,n)
ρ-sign, we denote the output of the

resulting experiment as REALπ(t,n)
ρ-sign ,A,Z∗ . As π(t,n)

ρ-sign UC-realizes Fn,tSign, there must exist a simulator SSign which

interacts with Z∗ in place of A, and queries Fn,tSign instead of interacting with honest parties, with the output of
the resulting experiment denoted IDEALFn,tSign ,SSign,Z∗ . It must hold that REALπ(t,n)

ρ-sign ,A,Z∗ ≈ IDEALFn,tSign ,SSign,Z∗ .
We make use of this fact when constructing the forger, i.e. the forger will run the simulator SSign with the
adversary to sample from IDEALFn,tSign ,SSign,Z∗ , as it can not sample from REALπ(t,n)

ρ-sign ,A,Z∗ without instantiating

honest parties in π(t,n)
ρ-sign, for which their secret states (and hence the secret key) must be known. Additionally

the challenger’s public key pk can be embedded in the ideal computation using Fn,tSign.
We are finally ready to construct the forger for the signature scheme, which forges a signature on a given

message m under a public key pk received from the challenger.

Forge(1κ, pk,m):

1. Sample
(τi,off , statei, state′i)i∈[h], stateoff , state′h+1← IDEALFn,tSign ,SSign,Z∗ with the caveat that Fn,tSign is programmed
to output pk as the public key when init is queried by SSign. The ideal oracle GLedger if used, is
implemented as per its specification.

2. Compute state′off ← Ext((τi,off)i∈[h], stateoff)

3. Compute σ ← Sign∗(m, state′off , (state′i)i∈[h+1])

4. Output σ

Lemma A.2. For all m ∈ {0, 1}∗, the following probability is overwhelming in κ:

Pr

[
Vrfy (pk,σ,m)=1 :

(sk, pk)← KeyGen(1κ)
σ ← Forge(pk,m)

]
Proof. We have previously shown in Lemma A.1 that it is possible to forge a message under a public key pk′

produced by running the real protocol π(t,n)
ρ-sign. We now show how to translate this ability in order to forge

a message under a public key pk received from an external challenger (i.e. the signature experiment) using
SSign to replace honest parties from π(t,n)

ρ-sign as well as program pk into the view of the adversary. We prove
this lemma via a sequence of hybrid experiments.

Hybrid H1 . In this hybrid experiment, Forge is run as specified, except that Step 1 is implemented using
REALπ(t,n)

ρ-sign ,A,Z∗ . Let the public key produced by running π(t,n)
ρ-sign in REAL be pk′. By Lemma A.1, the output

of Forge is a valid signature on m under pk′ with overwhelming probability.

Hybrid H2 . This hybrid experiment is the same as the last, except that Step 1 is implemented using
IDEALFn,tSign ,SSign,Z∗ instead. As REALπ(t,n)

ρ-sign ,A,Z∗ ≈ IDEALFn,tSign ,SSign,Z∗ , the output of Forge is distributed indis-

tinguishably to the last experiment (i.e. a valid signature under pk′ chosen by Fn,tSign).

Hybrid H3 . This hybrid experiment is the same as the last, with the caveat that Fn,tSign is programmed

to output pk as the public key when init is queried by SSign, instead of pk′ that Fn,tSign sampled internally.

32

As pk and pk′ are both sampled by running KeyGen with uniform randomness (by the challenger and Fn,tSign

respectively) it holds that {pk} ≡ {pk′} which has the following implication:

Pr

[
Vrfy(pk, σ,m) = 1 :

(sk, pk)← KeyGen(1κ)
σ ← H3(m, pk)

]
= Pr

[
Vrfy(pk′, σ′,m) = 1 :

(sk, pk)← KeyGen(1κ)
σ′ ← H2(m, pk)

]
= 1− negl(κ)

The final hybrid H3 is exactly the code of Forge, and outputs a valid signature on m under pk supplied by
the challenger, which proves the lemma.

The existence of an overwhelmingly successful forger for Sig given the existence of a protocol realizing
Fn,tSign with offline refresh, where n > tρ ≥ t > 2, in the presence of a mobile adversary where t > btρ/2c+ 1,
is guaranteed by Lemma A.2. The theorem is hence proven.

B Realizing Fn,2
Sign for Schnorr

We recall below the folklore instantiation of threshold Schnorr signatures.

Protocol 5: πDKG
Setup

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pi for i ∈ [n]
Ideal Oracles: FRDL

Com-ZK

Outputs:

• Common: Public key pk ∈ G
• Private: Secret key share ski

1. Each party Pi samples a random degree-1 polynomial fi over Zq
2. For all pairs of parties Pi and Pj , Pi sends fi(j) to Pj and receives fj(i) in return.

3. Each party Pi computes its point

f(i) :=
∑

j∈[1,n]

fj(i)

4. Each Pi computes
Ti := f(i) ·G

and sends (com-proof, idcom-zk
i , f(i), Ti) to FRDL

Com-ZK, using a fresh, unique value for idcom-zk
i .

5. Upon being notified of all other parties’ commitments, each party Pi releases its proof by sending
(decom-proof, idcom-zk

i) to FRDL
Com-ZK.

6. Each party Pi receives (accept, idcom-zk
j , Tj) from FRDL

Com-ZK for each j ∈ [1, n]\{i} if Pj ’s proof of knowledge
is valid. Pi aborts if it receives (fail, idcom-zk

j) instead for any proof, or if there exists an index x ∈ [3, n]
such that

λ2
1(x) · T1 + λ1

2(x) · T2 6= Tx

7. The parties compute the shared public key as

pk := λ2
1(0) · T1 + λ1

2(0) · T2

The above protocol is a reproduction of the distributed key generation protocol of Pedersen [Ped91],
adjusted for context.

33

Protocol 6: πR
Schnorr(pk, skb, 1− b,m)

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb, P1−b for b, 1− b ∈ [n]
Ideal Oracles: FRDL

Com-ZK

Inputs:

• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share in the exponent
pkb = λ1−b

b (0) · F (b) where F is the polynomial over G passing through (0, pk) and (b, f(b) ·G)

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

Outputs:

• Common: Signing nonce R ∈ G
• Private: Each party Pb has private output stateb ∈ Zq

1. Include all inputs in staten

2. Sample kb ← Zq and send (commit, kb, Rb = kb ·G) to FRDL
Com-ZK with fresh identifier idcom-zk

b

3. Upon receiving (committed, 1− b, idcom
1−b) from FRDL

Com-ZK, instruct FRDL
Com-ZK to release Rb

4. Upon receiving (decommitted, 1− b, idcom
1−b, R1−b) from FRDL

Com-ZK if R1−b ∈ G then compute

R = Rb +R1−b

5. Include kb in stateb

6. Output stateb, R

Protocol 7: πσSchnorr(stateb)

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb, P1−b for b, 1− b ∈ [n]
Ideal Oracles: FRDL

Com-ZK

Inputs: (Encoded in stateb)

• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G
• Private: Each party Pb has private input skb = λ1−b

b (0) · f(b) ∈ Zq

1. Parse kb,m, skb ← stateb

2. Compute
σb = H(R||m) · skb + kb

and send σb to P1−b

3. Upon receiving σ1−b ∈ Zq from P1−b compute

σ = σb + σ1−b

and if (σ,R) is a valid Schnorr signature under public key pk then output σ

34

By the linearity of the Schnorr signing equation, it is easy to verify correctness as

σ = σb + σ1−b

=
(
H(R||m) · λ1−bb (0) · skb + kb

)
+
(
H(R||m) · λb1−b(0) · sk1−b + k1−b

)
= H(R||m) ·

(
λ1−bb (0) · skb + λb1−b(0) · sk1−b

)
+ (kb + k1−b)

= H(R||m) · sk + k

Theorem B.1. (Informal) The protocol (πDKG
Setup, π

R
Schnorr, π

σ
Schnorr) UC-realizes Fn,2Sign for Sign = SignSchnorr

in the FCom,FRDL
Com-ZK-hybrid model.

The simulation strategy is straightforward: SR
Schnorr upon receiving R from the functionality sends R1−b =

R − Rb to Pb (on behalf of FRDL
Com-ZK). The simulator SσSchnorr upon receiving σ from the functionality sends

σ1−b = σ − σb to Pb on behalf of P1−b. Note here that σb is computed by the simulator as instructed by
Step 2 of πσSchnorr using the value kb received on behalf of FRDL

Com-ZK in Step 2 of πR
Schnorr.

C Required Functionalities

FRDL
Com-ZK The commitment functionality allows a party Pi to commit to a value X ∈ G and reveal it to

parties {Pj} at a later point if desired, along with a proof that that Pi knows x ∈ Zq such that x ·G = X.

Functionality 3: FRDL
Com-ZK

The functionality is parameterized by the group G of order q generated by G, and runs with a group of parties
~P.

Commit Proof On receiving
(
commit-proof, idcom-zk, x,Xi

)
from Pi, where x ∈ Zq and Xi ∈ G, store(

idcom-zk, x,Xi
)

and send (committed, i) to all parties.

Decommit Proof On receiving
(
decom-proof, idcom-zk

)
from Pi,

1. If X = x ·G, send
(
decommitted, idcom-zk, i

)
to each Pj ∈ ~P

2. Otherwise send
(
fail, idcom-zk, i

)
to each Pj ∈ ~P

Note that multiple parties Pj may participate.

This is a standard functionality that can be instantiated in the random oracle model to obtain folk-
lore commitments, along with Schnorr’s sigma protocol plugged into either the Fiat-Shamir [FS86] or Fis-
chlin [Fis05] transformations to obtain a non-interactive zero-knowledge proof of knowledge of discrete loga-
rithm. It is easy to see that the usual commitment functionality FCom can be obtained by ommitting a few
components of FRDL

Com-ZK.

FCoin This is a coin tossing functionality, which allows any pair of parties to publicly sample a uniform Zq
element.

35

Functionality 4: FCoin

This functionality is run with two parties P0, P1.
On receiving (sample-element, idcoin, q) from both P0, P1, sample x← Zq uniformly and send (idcoin, x) to both
parties as adversarially delayed output.

Realizing this functionality is easy in the FCom-hybrid model: P0 samples x0 ← Zq and sends it to FCom,
following which P1 samples x1 ← Zq and sends it to P0. Finally P0 instructs FCom to release x0 and the
output is defined as x = x0 + x1.

FMUL Secure two party multiplication functionality, in simplified form.

Functionality 5: FMUL

This functionality is run with two parties P0, P1.
On receiving (input, idcoin, x0) from P0 and (input, idcoin, x1) from P1 such that x0, x1 ∈ Zq, sample a uniform
(t0, t1)← Z2

q conditioned on
t0 + t1 = x0 · x1

and send t0 to P0 and t1 to P1 as adversarially delayed output.

For a more nuanced functionality that can be efficiently instantiated, along with such an instantiation
based on Oblivious Transfer (which we describe how to proactivize in this work), we refer the reader to the
work of Doerner et al. [DKLs19].

D Formal Definition of Offline Refresh

We build on the definition of Almansa et al. [ADN06] to a notion of mobile adversaries that accommodates
‘offline’ parties. We do this by having each party maintain a counter epoch written on a special tape, and
define the state of the system relative to these epoch values. While in our definition the adversary Z may
choose to activate parties in sequences that leave them in different epochs, the definition of Almansa et al.
does not permit this. In particular their definition requires all honest parties to first agree that they have
all successfully reached the latest epoch before the adversary is permitted to change corruptions.

Epochs Each party has a special “epoch tape” on which it writes an integer epoch. At the start of the
protocol, this tape contains the value 0 for all honest parties. We use the term “system epoch” to refer to
the largest epoch value written on any honest party’s tape.

Operations There are two kinds of commands that the environment Z can send to a party: operate,
refresh, and update. Intuitively operate corresponds to use of the system’s service, refresh the candidate
proactivization generation, and update the application of this proactivization to rerandomize parties’ private
state. The operate command will be issued to t parties simultaneously (in any realization this will require
them to interact), refresh to tρ parties (also requiring interaction), and operate will be individual and
non-interactive in its realization.

Non-degeneracy Upon being given the refresh command, an honest party must write the current system
epoch on its epoch tape. In order to rule out degenerate realizations, we also require that if any t honest
parties are given the operate command, the next refresh command sent to an honest party P will result
in the system epoch being incremented.

36

Corruptions At any given time, there can be at most t−1 parties controlled by Z. Mobility of corruptions
must adhere to the following rule: Z may decide to “uncorrupt” a party P at any time, however before
corrupting a new party P ′ ∈ ~P it must first “leave” P , then send refresh to any tρ parties without aborting
(i.e. increments the epoch counter), and finally update to P ′ before being given its internal state (and full
control over subsequent actions). Note that omitting this final update message (i.e. allowing Z to corrupt
P ′ before it has refreshed) will give Z the views of both P and P ′ from the same system epoch, in which
case the system will be fully compromised. This is implied by any standard definition of proactive security.
In fact, our revised definition grants Z more power than that of Almansa et al. [ADN06], as here not every
party need refresh before Z changes corruptions.

Crucially we allow the system epoch to be pushed forward by any tρ parties, i.e. consecutive epoch
increments may be enabled by completely non-overlapping sets of parties. This captures our notion of
“offline refresh” where not all parties in the system need be online to move the system forward; any tρ
parties can keep the epoch counter progressing while the others catch up at their own speed.

Offline-refresh must be non-interactive A direct implication of our definition is that one can not wait
for offline parties to respond before incrementing the epoch counter. This inherently rules out standard
interactive verifiable secret sharing (VSS) approaches where parties ‘complain’ if an adversary tries to cheat
them. Previous proactive secret sharing protocols can be viewed as implementing such a VSS between epochs
(either explicitly by complaints against misbehaviour, or implicitly by voting for ‘good’ sharings), and so a
fundamentally different approach is required for the offline-refresh setting.

E Proactive Threshold ECDSA Protocol

We give the full proactive ECDSA protocol below. It shares many similarities with π(2,n)
ρ-signand so we underline

changes in this protocol.

Protocol 8: π(2,n)
ρ-ECDSA

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb for b ∈ [n]
Ideal Oracles: FRDL

Com-ZK, GLedger, random oracle RO
Inputs:

• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share in the exponent
pkb = λ1−b

b (0) · F (b) where F is the polynomial over G passing through (0, pk) and (b, f(b) · G), epoch
index epoch ∈ Z+

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

1. Tag R from Threshold Signature:

i. Run the first half of the threshold signing protocol

(R, stateb)← πR
Sign

(
skb, 1− b, stateb,1−bMUL ,m

)
2. Sample New Polynomial:

i. Send (sample-element, idcoin
1 , q) and (sample-element, idcoin

2 , q) to FCoin and wait for responses (idcoin
1 ,

δ) and (idcoin
2 , seed) respectively

ii. Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

iii. Compute
sk′b = skb + fδ(b)

37

3. Store Tagged Refresh:

i. Append (R, sk′b, seed, epoch) to rpool

ii. Establish common nonce K ∈ G along with an additive sharing of its discrete logarithm:

a. Sample kb ← Zq, set Kb = kb ·G and send (com-proof, idcom-zk
b , kb,Kb) to FRDL

Com-ZK

b. Upon receiving (committed, 1− b, idcom-zk
1−b) from FRDL

Com-ZK, send (open, idcom-zk
b) to FRDL

Com-ZK

c. Wait to receive (decommitted, 1− b, idcom-zk
1−b ,K1−b ∈ G) from FRDL

Com-ZK

d. Set K = Kb +K1−b

iii. Compute

e = RO(R||K||seed||δ||epoch)

zb = e · skb + kb

iv. Send zb to P1−b and wait for z1−b, upon receipt verifying that

z1−b ·G = e · pk1−b +K1−b

and compute z = zb + z1−b

v. Set msg = (R, epoch, δ, seed,K, z)

vi. For each i ∈ [n] \ {b, 1− b}, send msg to Pi

4. Complete the threshold signature protocol by running σ ← πσSign

5. If σ 6= ⊥ then set tx = (m,R, σ) and send (Submit, sid, tx) to GLedger

Update:

1. For each unique msg received when offline do the following:

i. Parse (R, epoch′, δ, seed,K, z)← msg and if epoch′ < epoch ignore this msg

ii. Compute e = RO(R||K||seed||δ||epoch′) and verify that

z ·G = e · pk +K

iii. Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

and interpolate δi = fδ(i)

iv. If epoch′ = epoch, compute
sk′i = ski + δi

and append (R, sk′i, seed, epoch) to rpool

v. Otherwise epoch′ > epoch so append (epoch′, δi, seed, R) to fpool

2. Send (Read) to GLedger and receive (Read, b) in response. Set BLK to be the latest blocks occurring in b
since last awake, and in sequence from the earliest block, for each (σ,R) under pk encountered do the
following:

i. Find (R, sk′i, seed, epoch) ∈ rpool (match by R), ignore σ if not found

ii. Overwrite ski = sk′i, set epoch = epoch + 1, and set rpool = ∅
iii. For each j ∈ [n] \ i compute

randij = RO(i, j, seed)

and overwrite
stateMULij = Refresh MUL(stateMULij , randij)

iv. For each (epoch, δi, seed, R) ∈ fpool (i.e. matching current epoch) do:

(i) Set sk′i = ski + δi

(ii) Append (R, sk′i, seed, epoch) to rpool

(iii) Remove this entry from fpool

38

	Introduction
	Proactivizing Threshold Signatures
	Challenges in Realizing this Pattern
	Our Contributions
	Our Techniques
	(2,n) Construction
	General (t,n) Impossibility

	Related Work
	Organization

	Preliminaries
	Blockchain Model
	Miscellaneous

	Defining Offline Refresh
	Instantiating Offline Refresh
	Simple Honest Majority Instantiation
	Dishonest Majority with Offline Broadcast

	Threshold Signature Abstraction
	Abstraction

	Coordinating Two Party Refresh
	(2,n) Refresh With Two Online
	Proactive (2,n) ECDSA
	Proactive Secure Multiplication
	Multiplier Refresh in (2,n) ECDSA

	Performance and Implementation
	Cost Analysis
	Implementation
	Proactivizing Doerner et al. DKLs19
	Gennaro and Goldfeder GG18

	General (t,n) Impossibility
	Conclusion
	Acknowledgements
	Full Proof of Multiparty Impossibility
	Realizing [fun:sig]F[b]n,2[t]Sign for Schnorr
	Required Functionalities
	Formal Definition of Offline Refresh
	Proactive Threshold ECDSA Protocol

