// https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf // based on keccak-f[1600] permutation import "utils/casts/u8_to_bits"; import "utils/casts/u8_from_bits"; import "utils/casts/u64_to_bits"; import "utils/casts/u64_from_bits"; const u32[24] RHO = [ 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44 ]; const u32[24] PI = [ 10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1 ]; const u64[24] RC = [ 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000, 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a, 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008 ]; // left rotation def rotl64(u64 x, u32 n) -> u64 { return ((x << n) | (x >> (64 - n))); } // change endianness def swap_u64(u64 mut val) -> u64 { val = ((val << 8) & 0xFF00FF00FF00FF00) | ((val >> 8) & 0x00FF00FF00FF00FF); val = ((val << 16) & 0xFFFF0000FFFF0000) | ((val >> 16) & 0x0000FFFF0000FFFF); return (val << 32) | (val >> 32); } // compression function def keccakf(u64[25] mut st) -> u64[25] { u64[5] mut bc = [0; 5]; u64 mut t = 0; for u32 i in 0..25 { st[i] = swap_u64(st[i]); } for u32 r in 0..24 { // theta for u32 i in 0..5 { bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20]; } for u32 i in 0..5 { t = bc[(i + 4) % 5] ^ rotl64(bc[(i + 1) % 5], 1); for u32 j in 0..5 { st[(j * 5) + i] = st[(j * 5) + i] ^ t; } } t = st[1]; // rho pi for u32 i in 0..24 { u32 j = PI[i]; bc[0] = st[j]; st[j] = rotl64(t, RHO[i]); t = bc[0]; } // chi for u32 i in 0..5 { for u32 j in 0..5 { bc[j] = st[(i * 5) + j]; } for u32 j in 0..5 { u32 p = (i * 5) + j; st[p] = st[p] ^ (!bc[(j + 1) % 5] & bc[(j + 2) % 5]); } } // iota st[0] = st[0] ^ RC[r]; } for u32 i in 0..25 { st[i] = swap_u64(st[i]); } return st; } def u64_from_u8_array(u8[8] input) -> u64 { bool[64] bits = [ ...u8_to_bits(input[0]), ...u8_to_bits(input[1]), ...u8_to_bits(input[2]), ...u8_to_bits(input[3]), ...u8_to_bits(input[4]), ...u8_to_bits(input[5]), ...u8_to_bits(input[6]), ...u8_to_bits(input[7]) ]; return u64_from_bits(bits); } def u64_to_u8_array(u64 input) -> u8[8] { bool[64] bits = u64_to_bits(input); return [ u8_from_bits(bits[0..8]), u8_from_bits(bits[8..16]), u8_from_bits(bits[16..24]), u8_from_bits(bits[24..32]), u8_from_bits(bits[32..40]), u8_from_bits(bits[40..48]), u8_from_bits(bits[48..56]), u8_from_bits(bits[56..64]) ]; } def to_bytes(u64[25] input) -> u8[200] { u8[200] mut output = [0; 200]; for u32 i in 0..25 { u8[8] t = u64_to_u8_array(input[i]); for u32 j in 0..8 { output[i * 8 + j] = t[j]; } } return output; } def from_bytes(u8[200] input) -> u64[25] { u64[25] mut output = [0; 25]; for u32 i in 0..25 { output[i] = u64_from_u8_array(input[i*8..i*8+8]); } return output; } def main(u8[N] mut input, u8 delim) -> u8[W] { u8[200] mut b = [0; 200]; u32 rate = 200 - (2 * W); u32 mut pt = 0; // update for u32 i in 0..N { b[pt] = b[pt] ^ input[i]; pt = (pt + 1) % rate; b = pt == 0 ? to_bytes(keccakf(from_bytes(b))) : b; } // finalize b[pt] = b[pt] ^ delim; b[rate - 1] = b[rate - 1] ^ 0x80; b = to_bytes(keccakf(from_bytes(b))); return b[..W]; }