A standalone version of this template is available for each release of Polkadot in the [Substrate Developer Hub Parachain Template](https://github.com/substrate-developer-hub/substrate-parachain-template/) repository.
The parachain template is generated directly at each Polkadot release branch from the [Node Template in Substrate](https://github.com/paritytech/substrate/tree/master/bin/node-template) upstream
All bugs, suggestions, and feature requests should be made upstream in the [Substrate](https://github.com/paritytech/substrate/tree/master/bin/node-template) repository.
After you start the node template locally, you can interact with it using the hosted version of the [Polkadot/Substrate Portal](https://polkadot.js.org/apps/#/explorer?rpc=ws://localhost:9944) front-end by connecting to the local node endpoint.
A hosted version is also available on [IPFS (redirect) here](https://dotapps.io/) or [IPNS (direct) here](ipns://dotapps.io/?rpc=ws%3A%2F%2F127.0.0.1%3A9944#/explorer).
You can also find the source code and instructions for hosting your own instance on the [polkadot-js/apps](https://github.com/polkadot-js/apps) repository.
If you want to see the multi-node consensus algorithm in action, see [Simulate a network](https://docs.substrate.io/tutorials/build-a-blockchain/simulate-network/).
- Consensus: Blockchains must have a way to come to [consensus](https://docs.substrate.io/fundamentals/consensus/) on the state of the network.
Substrate makes it possible to supply custom consensus engines and also ships with several consensus mechanisms that have been built on top of [Web3 Foundation research](https://research.web3.foundation/en/latest/polkadot/NPoS/index.html).
- [`chain_spec.rs`](./node/src/chain_spec.rs): A [chain specification](https://docs.substrate.io/build/chain-spec/) is a source code file that defines a Substrate chain's initial (genesis) state.
Chain specifications are useful for development and testing, and critical when architecting the launch of a production chain.
These functions are used to define the genesis state for the local development chain configuration.
These functions identify some [well-known accounts](https://docs.substrate.io/reference/command-line-tools/subkey/) and use them to configure the blockchain's initial state.
- [`service.rs`](./node/src/service.rs): This file defines the node implementation.
Take note of the libraries that this file imports and the names of the functions it invokes.
In particular, there are references to consensus-related topics, such as the [block finalization and forks](https://docs.substrate.io/fundamentals/consensus/#finalization-and-forks) and other [consensus mechanisms](https://docs.substrate.io/fundamentals/consensus/#default-consensus-models) such as Aura for block authoring and GRANDPA for finality.
FRAME allows runtime developers to declare domain-specific logic in modules called "pallets".
At the heart of FRAME is a helpful [macro language](https://docs.substrate.io/reference/frame-macros/) that makes it easy to create pallets and flexibly compose them to create blockchains that can address [a variety of needs](https://substrate.io/ecosystem/projects/).
Review the [FRAME runtime implementation](./runtime/src/lib.rs) included in this template and note the following:
- This file configures several pallets to include in the runtime.
Each pallet configuration is defined by a code block that begins with `impl $PALLET_NAME::Config for Runtime`.
- The pallets are composed into a single runtime by way of the [`construct_runtime!`](https://paritytech.github.io/substrate/master/frame_support/macro.construct_runtime.html) macro, which is part of the [core FRAME pallet library](https://docs.substrate.io/reference/frame-pallets/#system-pallets).
The runtime in this project is constructed using many FRAME pallets that ship with [the Substrate repository](https://github.com/paritytech/substrate/tree/master/frame) and a template pallet that is [defined in the `pallets`](./pallets/template/src/lib.rs) directory.
- Storage: FRAME defines a rich set of powerful [storage abstractions](https://docs.substrate.io/build/runtime-storage/) that makes it easy to use Substrate's efficient key-value database to manage the evolving state of a blockchain.
- Dispatchables: FRAME pallets define special types of functions that can be invoked (dispatched) from outside of the runtime in order to update its state.
Please follow the [Substrate Docker instructions here](https://github.com/paritytech/substrate/blob/master/docker/README.md) to build the Docker container with the Substrate Node Template binary.