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Abstract. Goldwasser and Micali (J Comput Syst Sci 28(2):270–299, 1984) high-
lighted the importance of randomizing the plaintext for public-key encryption and in-
troduced the notion of semantic security. They also realized a cryptosystemmeeting this
security notion under the standard complexity assumption of deciding quadratic residu-
osity modulo a composite number. The Goldwasser–Micali cryptosystem is simple and
elegant but is quite wasteful in bandwidth when encrypting large messages. A number
of works followed to address this issue and proposed various modifications. This paper
revisits the original Goldwasser–Micali cryptosystem using 2k -th power residue sym-
bols. The so-obtained cryptosystems appear as a very natural generalization for k ≥ 2
(the case k = 1 corresponds exactly to the Goldwasser–Micali cryptosystem). Advan-
tageously, they are efficient in both bandwidth and speed; in particular, they allow for
fast decryption. Further, the cryptosystems described in this paper inherit the useful
features of the original cryptosystem (like its homomorphic property) and are shown
to be secure under a similar complexity assumption. As a prominent application, this
paper describes an efficient lossy trapdoor function-based thereon.
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1. Introduction

Encryption is arguably one of the most fundamental cryptographic primitives. Although
it seems an easy task to identify properties that a good encryption scheme must fulfill,
it turns out that rigorously defining the right security notion is not trivial at all. Security
is context sensitive. Merely requiring that the plaintext cannot be recovered from the
ciphertext is not enough in most applications. One may require that the knowledge of
some a priori information on the plaintext does not help the adversary to obtain any
new information, that is, beyond what can be obtained from the a priori information.
This intuition is formally captured by the notion of semantic security, introduced in a
seminal paper byGoldwasser andMicali [20]. They also introduced the equivalent notion
of indistinguishability of encryptions, which is usually easier to work with. Given the
encryption of any two equal-length (distinct) plaintexts, an adversary should not be able
to distinguish the corresponding ciphertexts.
Clearly, the latter notion is only achievable by probabilistic encryption schemes. One

such cryptosystem was also presented in [20]. It achieves ciphertext indistinguishability
under theQuadratic Residuosity (QR) assumption. Informally, this assumption says that
it is infeasible to distinguish squares from nonsquares in JN (i.e., the set of elements in
Z∗

N whose Jacobi symbol is +1) where N = pq is an RSA-type modulus of unknown
factorization.
TheGoldwasser–Micali cryptosystem is simple and elegant. The public key comprises

an RSA modulus N = pq and a nonsquare y ∈ JN , while the private key is the secret
factor p. The encryption of a bit m ∈ {0, 1} is given by c = ym x2 mod N for a random
x ∈ Z∗

N . The message m is recovered using p, by checking whether c is a square: m = 0
if so, and m = 1 otherwise —observe that a nonsquare y ∈ JN is also a nonsquare
modulo p. The encryption of a bitstring m = (mk−1, . . . , m0)2, with mi ∈ {0, 1},
proceeds by forming the ciphertexts ci = ymi x2 mod N , for 0 ≤ i ≤ k − 1. The
scheme is computationally efficient but somewhat wasteful in bandwidth as k · log2 N
bits are needed to encrypt a k-bit message. Several proposals were made to address this
issue.
A first attempt is due to Blum and Goldwasser [8]. They achieve a better ciphertext

expansion: The ciphertext has the same length as the plaintext plus an integer of the size
of the modulus. The scheme is proved semantically secure assuming the unpredictability
of the output of the Blum–Blum–Shub’s pseudorandom generator [4,5], which resides
on the factorization hardness assumption. Details about this scheme can be found in [21].
Another direction, put forward by Benaloh and Fischer [6,11], is to use a k-bit prime r

such that r | p − 1, r2 � p − 1 and r � q − 1. The scheme also requires y ∈ Z∗
N such that

yφ(N )/r �≡ 1 (mod N ), where φ(N ) = (p − 1)(q − 1) denotes Euler’s totient function.
A k-bit messagem (withm < r ) is encrypted as c = ym xr mod N , where x ∈R Z∗

N . It is
recovered by searching over the entiremessage space, [0, r) ⊆ {0, 1}k , for the elementm
satisfying (yφ(N )/r )m ≡ cφ(N )/r (mod N ). The scheme is shown to be secure under the
prime residuosity assumption (which generalizes the quadratic residuosity assumption).
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With the Benaloh–Fischer cryptosystem, the ciphertext corresponding to a k-bit message
is short, but the decryption process is nowdemanding. In practice, the scheme is therefore
limited to small values of k, say k < 40.
The Benaloh–Fischer cryptosystem was subsequently extended by Naccache and

Stern [39]. They observe that the decryption can be sped up by rather considering a
product of small (odd) primes R = ∏

i ri such that ri | φ(N ) but ri
2 � φ(N ) for each

prime ri .Given a ciphertext, the plaintextm is reconstructed frommi :=m mod ri through
Chinese remaindering. The advantage is that each mi is searched in the subspace [0, ri )

instead of the entire message space. A variant of this technique was used by Groth [22].
Other generalizations and extensions of the Goldwasser–Micali cryptosystem but

without formal security analysis can be found in [30,44,52]. In [35,36], Monnerat and
Vaudenay developed applications using the more general theory of characters, specifi-
cally with characters of order ≤ 4. Related cryptosystems are described in [47,49]. A
different approach was proposed by Okamoto and Uchiyama [41], who suggested to use
moduli of the form N = p2q. This allows encrypting messages of size up to log2 p bits.
This was later extended by Paillier [42] to the setting N = p2q2 (see also [12,14]).
A useful application of additive homomorphic encryption schemes resides in the con-

struction of lossy trapdoor functions (or LTDFs in short). These functions, as introduced
by Peikert andWaters [45], are function families wherein injective functions are compu-
tationally indistinguishable from lossy functions, which lose many bits of information
about their input. LTDFs have proved to be very powerful and versatile in the cryptogra-
pher’s toolbox.Theynotably imply chosen-ciphertext-secure public-key encryption [45],
deterministic encryption [3,7], as well as cryptosystems that retain some security in the
absenceof reliable randomness [2] or in thepresenceof selective-opening adversaries [9].

Our Contributions

New Homomorphic Cryptosystem. We suggest an improvement of the original
Goldwasser–Micali cryptosystem. It can be seen as a follow-up of the earlier works
due to Benaloh and Fischer [11] and Naccache and Stern [39]. Before discussing it, we
quote from [39]:

“Although the question of devising new public-key cryptosystems appears
much more difficult […] we feel that research in this direction is still in
order: simple yet efficient constructions may have been overlooked.”

It is striking that the generalized cryptosystem in this paper was not already proposed
because, as will become apparent (cf. Sect. 3), it turns out to be a very natural gen-
eralization. Our approach consists in considering nth-power residues modulo N with
n = 2k (the Goldwasser–Micali system corresponds to the case k = 1). This presents
many advantages. First, the resulting cryptosystem is bandwidth efficient. Only log2 N
bits are needed for encrypting a k-bit message in typical applications (e.g., using the
KEM/DEM paradigm). Second, the decryption process is fast. Searches are no longer
needed (not even in smaller subspaces) in the decryption algorithm as plaintext messages
can be recovered bit by bit. Further, although asymptotically slower than in Paillier’s
cryptosystem, the decryption process turns out to achieve comparable performance for
most practical values of k (e.g., k ≤ 128). As a last advantage, the underlying com-
plexity assumptions are similar to that used by Goldwasser and Micali. The proposed
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cryptosystem is shown to be secure under the quadratic residuosity assumption for RSA
moduli N = pq such that p ≡ 1 (mod 2k) and q ≡ 3 (mod 4). When q �≡ 3 (mod 4),
it assumes in addition the hardness of determining the Jacobi symbol of an element
y ∈ Z∗

N given a pair (x, N )where x = y2 mod N . Although the proposed cryptosystem
makes use of primes of special form, there are no known factoring algorithms taking ad-
vantage of that. Further, complexity-wise, the use of such special primes does not incur
penalty with the latest prime generation algorithms. As will be seen, the time required
to generate a random prime p ≡ 1 (mod 2k) is essentially the same as the time required
to generate a random, form-free prime.
We also note that, similarly to the Goldwasser–Micali cryptosystem, our generalized

cryptosystem enjoys an additive property known as homomorphic encryption. If c1 and
c2 denote two ciphertexts corresponding to k-bit plaintexts m1 and m2, respectively,
then c1 · c2 (mod N ) is an encryption of the message m1 + m2 (mod 2k). This reveals
useful in several applications like voting schemes.
As another useful property, the new scheme inherits the selective-opening security1

[9,15] of the Goldwasser–Micali system (in the sense of a simulation-based definition
given in [9]). We actually prove its semantic security by showing that its public key is
indistinguishable from a so-called lossy key for which encryptions reveal nothing about
the encrypted message.
We thus believe our system to provide an interesting competitor to Paillier’s cryptosys-

tem for certain applications. As a salient example, we show that it provides a dramatically
improved lossy trapdoor function.

New Efficient Lossy Trapdoor Functions. The initial LTDF realizations [45] were
based on the Decisional Diffie–Hellman (DDH) and Learning-with-Error (LWE) [46]
assumptions. More efficient examples based on the Decisional Composite Residuosity
(DCR) assumption were given in [7,18,19], while Kiltz et al.[32] showed that the RSA
permutation provides a lossy function. Under the Quadratic Residuosity (QR) assump-
tion, three distinct constructions were put forth in [18,19,25,50]. Those of Freeman et
al.[18,19] and of Wee [50] must be used in combination with the results of Mol and
Yilek [37] as they only lose single bits of information about the input. Hemenway and
Ostrovsky [25] suggested a more efficient realization, of whichWee’s framework [50] is
a generalization.While theirQR-based LTDF has found applications in the design of de-
terministic encryption schemes [10], it is conceptually very similar to the Peikert–Waters
matrix-based schemes and suffers from similarly large outputs and descriptions.
We show that our variant of theGoldwasser–Micali cryptosystem drastically improves

the efficiency of theHemenway–OstrovskyLTDF. Specifically, it reduces both the length
of the output and the description of the function. By appropriately selecting the para-
meters, we obtain evaluation keys and outputs consisting of a constant number of Z∗

N
elements. We thus get a DDH/QR-based LTDF, whose efficiency is competitive with
Paillier-based realizations [7,18,19]. These improvements carry over to the determinis-
tic encryption setting, when the Hemenway–Ostrovsky LTDF is used as a building block
of the Brakerski–Segev system [10].

1 This notion refers to an attack scenario where the adversary is given t encryptions of possibly correlated
messages, opens t/2 out of these (and thereby obtains the messages and encryption coins) before attempting
to harm the security of the remaining ciphertexts.
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Outline of the Paper

In the next section, we introduce some mathematical background and review some
complexity assumptions. In Sect. 3, we present our generalized cryptosystem. We prove
its security in Sect. 4. Section5 discusses certain implementation aspects. In Sect. 6, we
describe our new lossy trapdoor function. Finally, we conclude in Sect. 7.

2. Background

We review some useful background and fix the notation. In particular, we define the n-th
power residue symbol.We refer the reader to [26,48,51] for further details on (quadratic)
residuosity. More information about encryption schemes can be found in textbooks in
cryptography (e.g.[21,31]).

2.1. General Notation

The set of nonnegative integers is denoted by N. For any integer N ≥ 2, ZN denotes the
ring of integers modulo N , and Z∗

N denotes its group of units. The order of Z∗
N is φ(N ),

where φ is Euler’s totient function.
For any positive integer N and any integer a, a mod N represents the smallest integer

in the set {0, . . . , N −1} that is congruent to a modulo N . Furthermore, for any positive
odd integer N and any integer a, a mods N represents the absolute smallest residue of
a modulo N —note the “s” ending the “mod” operator. The complete set of absolute
smallest residues is {−(N − 1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2}.

2.2. nth-Power Residues

Let N ≥ 2 be an integer. For each integer n ≥ 2, we define (Z∗
N )n = {xn | x ∈ Z∗

N } as
the set of nth-power residues modulo N . If the relation a = xn has no solution in Z∗

N ,
then a is called a nth-power nonresidue modulo N .
Suppose that p is an odd prime. For any integer a with gcd(a, p) = 1, it is easily

verified that a is a nth-power residue modulo p if and only if

a
p−1

gcd(n,p−1) ≡ 1 (mod p).

When n = 2 (and so gcd(n, p − 1) = 2), this is known as Euler’s criterion. It
allows one to distinguish quadratic residues from quadratic nonresidues. This defines
the Legendre symbol:

(
a

p

)

=
{
1 if a is a quadratic residue modulo p

−1 if a is a quadratic nonresidue modulo p
.

There are several ways to generalize the Legendre symbol (see [34]). In this paper, we
consider the n-th power residue symbol for a divisor n of (p − 1), as presented in [51,
Definition 1.6.21].
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Definition 1. Let p be an odd prime and let n ≥ 2 such that n | p − 1. Then, the
symbol

(
a

p

)

n
= a

p−1
n mods p

is called the n-th power residue symbol modulo p.

It satisfies the following properties. Let a and b be two integers that are co-prime to
p. Then,

1. If a ≡ b (mod p) then
(

a
p

)

n
=
(

b
p

)

n
;

2.
(

an

p

)

n
= 1;

3.
(

ab
p

)

n
=
(

a
p

)

n

(
b
p

)

n
mods p;

4.
(
1
p

)

n
= 1 and

(−1
p

)

n
= (−1)

p−1
n .

2.3. Quadratic Residuosity

Let N = pq be the product of two (odd) primes p and q. For an integer a co-prime to
N , the Jacobi symbol is the product of the corresponding Legendre symbols, namely(

a
N

)
=
(

a
p

)(
a
q

)
. This gives rise to the multiplicative group JN of integers whose Jacobi

symbol is+1, JN = {a ∈ Z∗
N |
(

a
N

)
= 1
}
. A relevant subset of JN is the set of quadratic

residues modulo N , QRN = {
a ∈ Z∗

N |
(

a
p

)
=
(

a
q

)
= 1

}
. The set of integers whose

Jacobi symbol is −1 is denoted by JN ; i.e., JN = {a ∈ Z∗
N |
(

a
N

)
= −1

} = Z∗
N \JN .

The Quadratic Residuosity (QR) assumption says that, given a random element a ∈
JN , it is hard to decide whether a ∈ QRN if the prime factors of N are unknown. To
emphasize that this should hold for RSA moduli N = pq with p ≡ 1 (mod 2k) for
some k ≥ 1, we refer to it as the k-QR assumption. Formally, we have:

Definition 2. (Quadratic Residuosity Assumption, k-QR) Let RSAGen be a proba-
bilistic algorithm which, given a security parameter κ , outputs primes p and q such
that p ≡ 1 (mod 2k), and their product N = pq. The Quadratic Residuosity (k-QR)
assumption asserts that the function Advk-QR

D (κ), defined as the distance

∣
∣
∣Pr[D(x, N ) = 1 | x

R← QRN ] − Pr[D(x, N ) = 1 | x
R← JN \QRN ]

∣
∣
∣

is negligible for any probabilistic polynomial-time distinguisher D; the probabilities
are taken over the experiment of running (N , p, q) ← RSAGen(1κ) and choosing at
random x ∈ QRN and x ∈ JN \QRN .

We also introduce a new assumption. The new assumption, which we call the Squared

Jacobi Symbol (SJS) assumption, posits the infeasibility of determining whether
(

y
N

)
=
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1 or −1 given (x, N ) where x = y2 mod N . Again, when the assumption is directed to
RSA moduli N = pq with p ≡ 1 (mod 2k), we write it k-SJS. Formally, we define:

Definition 3. (Squared Jacobi Symbol Assumption, k-SJS) Let RSAGen be a prob-
abilistic algorithm which, given a security parameter κ , outputs primes p and q such
that p ≡ 1 (mod 2k), and their product N = pq. The Squared Jacobi Symbol (k-SJS)
assumption asserts that the function Advk-SJS

D (κ), defined as the distance

∣
∣
∣Pr[D(y2 mod N , N ) = 1 | y

R← JN ] − Pr[D(y2 mod N , N ) = 1 | y
R← JN ]

∣
∣
∣

is negligible for any probabilistic polynomial-time distinguisher D; the probabilities
are taken over the experiment of running (N , p, q) ← RSAGen(1κ) and choosing at
random y ∈ JN and y ∈ JN .

When q ≡ 3 (mod 4), any element x ∈ QRN has four square roots: two of Jacobi
symbol+1 and two of Jacobi symbol−1. In that case, as detailed in Sect. 3.3, the k-SJS
assumption holds perfectly.

3. A New Public-Key Encryption Scheme

We generalize the Goldwasser–Micali cryptosystem so that it can efficiently support the
encryption of larger messages while remaining additively homomorphic.

3.1. Description

The setting is basically the same as for the Goldwasser–Micali cryptosystem. The only
additional requirement is that the prime p is chosen congruent to 1 modulo 2k , where k
denotes the bit size of the messages being encrypted. The case k = 1 (i.e., encryption
of 1-bit messages) corresponds to the Goldwasser–Micali cryptosystem.
In more detail, our encryption scheme is the tuple (KeyGen,Encrypt,Decrypt)

defined as follows.

KeyGen(1κ) Given a security parameter κ , KeyGen defines an integer k ≥ 1,
randomly generates primes p and q such that p ≡ 1 (mod 2k), and sets N = pq.
It also picks a random y ∈ JN \QRN . The public and private keys are pk = {N , y, k}
and sk = {p}, respectively.
Encrypt(pk, m)LetM = {0, 1}k . To encrypt amessagem ∈ M (seen as an integer
in {0, . . . , 2k − 1}), Encrypt picks a random x ∈ Z∗

N and returns the ciphertext

c = ym x2
k
mod N .

Decrypt(sk, c) Given c ∈ Z∗
N and the private key sk = {p}, the algorithm first

computes z =
(

c
p

)

2k
and then finds m ∈ {0, . . . , 2k − 1} such that the relation

z =
[(

y

p

)

2k

]m

mods p
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holds. A fast decryption algorithm is detailed in Sect. 3.2.

The correctness of the decryption is easily verified by observing that α:=
(

y
p

)

2k
has

order 2k as an element in Z∗
p. Indeed, letting n = ordp(α) the order of α, we have

n | 2k since, by definition, α ≡ y
p−1
2k (mod p). But n cannot be equal to 2k′

for some

k′ < k because α2k′ ≡ 1 (mod p) would imply y
p−1
2 ≡ 1 (mod p), which contradicts

the assumption that y ∈ JN \QRN ⇐⇒
(

y
p

)
=
(

y
q

)
= −1. The decryption algorithm

recovers the unique m ∈ {0, . . . , 2k − 1} such that αm ≡ z (mod p).
Furthermore, the scheme is homomorphic for the additionmodulo 2k : if c1 = ym1 x12

k

and c2 = ym2 x22
k
are ciphertexts of m1 and m2, respectively, then c1 · c2 = ym1+m2

(x1x2)2
k
mod N is a ciphertext of m1 + m2 (mod 2k).

3.2. Fast Decryption

At first glance, from the above description, it seems that the decryption process amounts
to a search through the entire message space {0, 1}k , similarly to some earlier cryptosys-
tems. But we can do better. One of the main advantages of the proposed cryptosystem is
that it provides an efficient way to recover the message. Hence, it remains practical, even
for large values of k. The decryption algorithm proceeds similarly to the Pohlig-Hellman
algorithm [43].
The message m ∈ {0, 1}k is viewed as a k-bit integer given by its binary expansion

m =∑k−1
i=0 mi 2i , with mi ∈ {0, 1}. Given c = ym x2

k
mod N , we have

(
c

p

)

2i
=
(

ym x2
k

p

)

2i

=
⎛

⎝
y
∑i−1

j=0 m j 2 j

p

⎞

⎠

2i

=
(

y

p

)∑i−1
j=0 m j 2 j

2i
mods p

since ym x2
k = y

∑i−1
j=0 m j 2 j · (y

∑k−1
j=i m j 2 j−i

x2
k−i )2i

, for 1 ≤ i ≤ k. As a result, m can
be recovered bit by bit using p, starting from the least significant bit. Implementation
details are provided in Sect. 5.2.

3.3. Security Analysis

We focus on semantic security. The case k = 1 corresponds to the Goldwasser–
Micali cryptosystem. Indeed, when k = 1, the 2k-th power residue symbol is then
the classical Legendre symbol and the assumption p ≡ 1 (mod 2k) is trivially verified.
The Goldwasser–Micali scheme has indistinguishable encryptions under the standard
Quadratic Residuosity assumption.
In the general case (i.e., k ≥ 1), we prove that the scheme provides indistinguish-

able encryptions (IND-CPA security) under the k-QR and k-SJS assumptions. More
precisely:

Theorem 1. Let κ denote the security parameter. For any IND-CPA adversary A
against the scheme of Sect.3.1, there exist a k-QR distinguisher D1 and a k-SJS dis-
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tinguisher D2 with comparable running times and such that

Advind-cpa
A (κ) ≤ 3

2

(
(k − 1

3 ) · Advk-QR
D1

(κ) + (k − 1) · Advk-SJS
D2

(κ)
)

.

Proof. The proof is given in Sect. 4. �

When k = 1, the theorem reads Advind-cpaA (κ) ≤ AdvQR
D1

(κ), as shown in [20].

We henceforth assume k ≥ 2. When k ≥ 2, the condition p ≡ 1 (mod 2k) implies
p ≡ 1 (mod 4). Depending on q, there are two possible subcases. If q ≡ 1 (mod 4)
then −1 is a square modulo p and modulo q. The square roots of any element of QRN
then all have the same Jacobi symbol modulo N . The hardness to distinguish among
them is captured by the k-SJS assumption.

The subcase q ≡ 3 (mod 4) is more interesting. We then have
(−1

N

)
= −1. As a

consequence, by definition of the Jacobi symbol, it follows that

{
y2 mod N | y ∈ JN

}
=
{

y2 mod N |
(

y
N

)
= −1

}
=
{
(−y)2 mod N |

(−y
N

)
= −1

}

=
{

y2 mod N | −
(

y
N

)
= −1

}

=
{

y2 mod N | y ∈ JN

}
.

Since the two sets are identical, the k-SJS assumption holds perfectly when q ≡ 3
(mod 4). This in turn leads to the following corollary.

Corollary 1. When q ≡ 3 (mod 4), for any IND-CPA adversaryAagainst the scheme
of Sect.3.1, there exists a k-QR distinguisher D with comparable running time and such
that

Advind-cpa
A (κ) ≤ 1

2 (3k − 1) · Advk-QR
D (κ).

Proof. First observe that the bound is valid for k = 1. For k ≥ 2, the corollary follows
by letting D1 = D and plugging Advk-SJS

D2
(κ) = 0 in the bound of Theorem1. �

The bound in Corollary1 can be slightly tightened by a more direct proof. We have:

Theorem 2. Let κ denote the security parameter. For any IND-CPA adversary A
against the scheme of Sect.3.1 with q ≡ 3 (mod 4), there exists a k-QR distinguisher
D with comparable running time and such that

Advind-cpa
A (κ) ≤ 1

2 (k + 1) · Advk-QR
D (κ).

Proof. The proof is given in appendix. �
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Comparing the security bounds offered by Theorems1 and 2, it turns out that RSA
moduli N = pq with p ≡ 1 (mod 2k) and q ≡ 3 (mod 4) should be preferred over
RSA moduli with q ≡ 1 (mod 4). More importantly, selecting RSA moduli N = pq
with p ≡ 1 (mod 2k) and q ≡ 3 (mod 4) presents the advantage that the security
solely relies on a QR-based assumption (namely the k-QR assumption).

Regarding the weaker notion of one wayness, it is easy to see that one wayness can be
proved just under the k-QR assumption in all cases. Let B be an adversary which returns

m when given c = ym x2
k
mod N and N (with x

R← Z∗
N ). We construct a distinguisher

D for the k-QR assumption as follows. It takes as input an RSA modulus N = pq with
p ≡ 1 (mod 2k) and an elementw ∈ Z∗

N . Its goal is to distinguishwhetherw ∈ QRN or
w ∈ JN \QRN . To do this,D simply picks a random x ∈ Z∗

N , sets c = wx2 mod N , and
feeds B with (c, N ). When the latter outputs a result m, D outputs the least significant
bit of m. It is clear that if w ∈ QRN , c is a ciphertext of an even plaintext; otherwise,
c is a ciphertext of an odd plaintext. Hence, if B is a successful attacker against one
wayness, D is a successful distinguisher for k-QR.

4. Security Proof

4.1. Gap 2k-Residuosity Assumption

The k-QR assumption states that, without knowing the factorization of N , random
elements of QRN are computationally indistinguishable from random elements of
JN \QRN . Here, it will be convenient to consider a gap variant of the k-QR assumption.
We chose the terminology “gap” (not to be confusedwith computational problemswhich
have an easy decisional counterpart [40]) by analogywith certain lattice problems, where
not every instance is a yes or no instance since a gap exists between these.

Definition 4. (Gap2k-ResiduosityAssumption,Gap 2k-Res) LetRSAGenbe aprob-
abilistic algorithmwhich, given a security parameter κ , outputs primes p and q such that
p ≡ 1 (mod 2k). The Gap 2k-Residuosity problem in Z∗

N consists in distinguishing a
uniform element of V0 from a uniform element of V1 given only N = pq, where V0 and
V1 are defined as follows:

V0 = {x ∈ JN \QRN
}

and V1 = {y2
k
mod N | y ∈ Z

∗
N

}
.

The Gap 2k-Residuosity (Gap 2k-Res) assumption posits that the advantage

AdvGap 2k -Res
D (κ), defined as the distance

∣
∣
∣Pr[D(x, k, N ) = 1 | x

R← V0] − Pr[D(x, k, N ) = 1 | x
R← V1]

∣
∣
∣

is negligible for any probabilistic polynomial-time distinguisherD; the probabilities are

taken over the experiment of running (N , p, q) ← RSAGen(1κ) and choosing x
R← V0

and x
R← V1.
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The latter assumption was independently considered in [1] by Abdalla, Ben Hamouda,
and Pointcheval who used it to provide tighter security proofs for forward-secure signa-
tures.

4.2. Gap 2k-Res is Implied by k-QR and k-SJS

We now investigate the relationship between the Gap 2k-Residuosity assumption and
other more natural assumptions; namely, we will show that Gap 2k-Res is implied by
the k-QR and k-SJS assumptions.
For this proof, it is useful to introduce two intermediate assumptions: the “special”

k-QR assumption and the “special” k-SJS assumption.

Definition 5. (Special Quadratic Residuosity Assumption, k-QR�) Let RSAGen be a
probabilistic algorithmwhich, given a security parameter κ , outputs primes p and q such
that p ≡ 1 (mod 2k), and their product N = pq. The Special Quadratic Residuosity
(k-QR�) assumption asserts that the function Advk-QR�

D (κ), defined as the distance

∣
∣
∣Pr[D(x, N ) = 1 | x = y2 mod N , y

R← JN ] − Pr[D(x, N ) = 1 | x
R← JN \QRN ]

∣
∣
∣

is negligible for any probabilistic polynomial-time distinguisher D; the probabilities
are taken over the experiment of running (N , p, q) ← RSAGen(1κ) and choosing at
random y ∈ JN and x ∈ JN \QRN .

Definition 6. (Special Squared Jacobi Symbol Assumption, k-SJS�)LetRSAGen be a
probabilistic algorithmwhich, given a security parameter κ , outputs primes p and q such
that p ≡ 1 (mod 2k), and their product N = pq. The Special Squared Jacobi Symbol
(k-SJS�) assumption asserts that the function Advk-SJS�

D (κ), defined as the distance

∣
∣
∣Pr[D(y2 mod N , N ) = 1 | y

R← JN \QRN ] − Pr[D(y2 mod N , N ) = 1 | y
R← JN ]

∣
∣
∣

is negligible for any probabilistic polynomial-time distinguisher D; the probabilities
are taken over the experiment of running (N , p, q) ← RSAGen(1κ) and choosing at
random y ∈ JN \QRN and y ∈ JN .

Lemma 1. Using the previous notation, we have k-QR + k-SJS ⇒ k-QR� +
k-SJS�. More precisely, for any probabilistic polynomial-time distinguisher A against
k-QR� or k-SJS�, A is also a distinguisher against k-QR or k-SJS and there exists a
distinguisher B against k-QR with comparable running time, such that

Advk-QR�

A (κ) ≤ Advk-QR
A (κ) + 1

2 Adv
k-SJS
A (κ),

Advk-SJS�

A (κ) ≤ Advk-SJS
A (κ) + 1

2 Adv
k-QR
B (κ).

Proof. Consider a probabilistic polynomial-time algorithm A taking as input N and

x ∈ JN . For x
R← JN , we let
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε1 = Pr[A(x, N ) = 1 | x ∈ JN \QRN ]
ε′
2 = Pr[A(x, N ) = 1 | x = y2 ∈ QRN ∧ y ∈ JN \QRN ]

ε′′
2 = Pr[A(x, N ) = 1 | x = y2 ∈ QRN ∧ y ∈ QRN ]

ε3 = Pr[A(x, N ) = 1 | x = y2 ∈ QRN ∧ y ∈ JN ]
.

Against k-QR, k-SJS, k-QR�, and k-SJS�, its advantage is denoted

α1 := ∣∣ε1 − 1
4 (ε

′
2 + ε′′

2 ) − 1
2ε3
∣
∣ , α2:=

∣
∣ 1
2 (ε

′
2 + ε′′

2 ) − ε3
∣
∣ , α3:=

∣
∣ε1 − 1

2 (ε
′
2 + ε′′

2 )
∣
∣ ,

α4 := ∣∣ε′
2 − ε3

∣
∣ ,

respectively.
We have to show that if the k-QR and k-SJS assumptions hold then so do the k-QR�

and k-SJS� assumptions. The k-QR and k-SJS assumptions imply that α1 and α2 are
negligible.We also note that any significant difference between ε′

2 and ε′′
2 would lead to a

distinguisher against k-QR. We thus have |ε′
2 − ε′′

2 | ≤ Advk-QR
B (κ), with B an algorithm

with running time comparable to that of A.
From the definitions of α3 and α4, we can write

α3 = ∣∣ε1 − 1
2 (ε

′
2 + ε′′

2 )
∣
∣ = ∣∣ε1 − 1

4 (ε
′
2 + ε′′

2 ) − 1
2ε3 + 1

2ε3 − 1
4 (ε

′
2 + ε′′

2 )
∣
∣

≤ ∣∣ε1 − 1
4 (ε

′
2 + ε′′

2 ) − 1
2ε3
∣
∣+ ∣∣ 12ε3 − 1

4 (ε
′
2 + ε′′

2 )
∣
∣

= α1 + 1
2Adv

k-QR
B (κ)

and

α4 = ∣∣ε′
2 − ε3

∣
∣ = ∣∣ 12ε′

2 + 1
2ε

′′
2 − ε3 + 1

2ε
′
2 − 1

2ε
′′
2

∣
∣ ≤ ∣∣ 12 (ε′

2 + ε′′
2 ) − ε3

∣
∣+ ∣∣ 12 (ε′

2 − ε′′
2 )
∣
∣

≤ α2 + 1
2α1.

The previous inequalities show that when α1 and α2 are negligible then so are α3 and
α4. �

Theorem 3. (k-QR+k-SJS ⇒ Gap 2k-Res) For RSA moduli N = pq with p ≡ 1
(mod 2k), the Gap 2k-Res assumption holds if the k-QR assumption and the k-SJS
assumption hold. More precisely, for any probabilistic polynomial-time distinguisher B
against the former, there exist a k-QR distinguisher D1 and a k-SJS distinguisher D2
with comparable running times and for which

AdvGap 2k -Res
B (κ) ≤ 3

2

(
(k − 1

3 ) · Advk-QR
D1

(κ) + (k − 1) · Advk-SJS
D2

(κ)
)

.

Proof. To prove the result, we consider a sequence of distributions which will help us
bridge the gap between the assumptions. More precisely, for 0 ≤ i ≤ k −1, we consider
the subsets Di of JN given by

Di = {y2
i
mod N | y ∈ JN \QRN

}
.
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We also need other subsets which can be seen as the complement of Di in the set of
2i -th residues that are not 2i+1-th residues:

D′
i = {y2

i
mod N | y ∈ JN

}
.

Finally, we define the subgroup of 2k-th residues, Rk = {y2
k
mod N | y ∈ Z∗

N }.
If we consider the sets V0 and V1 (presented in Definition4), we have V0 = D0 and

V1 = Rk . The proof will actually proceed by showing the computational indistinguisha-
bility of the (uniform)distributions inducedby the corresponding subsets.Namely, unless
either the k-QR� assumption or the k-SJS� assumption is false, we will prove

D0
c≈ D′

1
c≈ D1

c≈ D′
2

c≈ D2
c≈ · · · c≈ D′

k−1
c≈ Dk−1,

where the
c≈ denotes computationally indistinguishable distributions. Finally, we also

prove that Dk−1
c≈ Rk unless the k-QR assumption is false. �

Remark 1. Note that we abuse notation by using Di , D′
i , Rk both for subsets and for

the uniform distributions over them. Also, it is important to see that:

– if y ∈R JN \QRN then y2
i ∈R Di ;

– if y ∈R JN then y2
i ∈R D′

i ;

– if y ∈R Z∗
N then y2

k ∈R Rk .

Claim 1. If k-QR� holds, for each i ∈ {1, . . . , k−1}, no probabilistic polynomial-time
adversary can distinguish the distributions of Di−1 and D′

i .

Proof (of Claim 1). Let D be a distinguisher that can tell apart Di−1 and D′
i with

nonnegligible advantage ε. We show that D implies a k-QR� distinguisher B1,i with
advantage ε for RSA moduli N = pq with p ≡ 1 (mod 2k).
Our distinguisher B1,i takes as input an RSAmodulus N = pq with p ≡ 1 (mod 2k)

and an element w ∈ Z∗
N which is drawn from one of the two distributions

dist0 = {y2 mod N | y
R← JN } , dist1 = {y | y

R← JN \QRN }.

Its task is to decide ifw is in dist0 or in dist1. To this end,B1,i chooses a random element

z
R← JN . It then defines x = z2

i
w2i−1

mod N and feeds D with (x, i, N ). When the
distinguisher D halts, B1,i outputs whatever D outputs.

– First assume that w = y2 ∈ dist0, for some y ∈R JN . We have x = (zy)2
i
mod N .

Further, since z
R← JN , we have zy ∈ JN and thus x ∈R D′

i .
– Now assume thatw ∈R JN \QRN . In this case, we clearly have x ∈R Di−1 because

x = (z2w)2
i−1

mod N and z2w ∈ JN \QRN . �

Claim2. If k-SJS� holds, for each i ∈ {1, . . . , k−1}, no probabilistic polynomial-time
adversary can distinguish the distributions of D′

i and Di .
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Proof (of Claim 2). Let D be a distinguisher with nonnegligible advantage ε between
Di and D′

i . We show that D implies a k-SJS� distinguisher B2,i with advantage ε for
RSA moduli N = pq with p ≡ 1 (mod 2k). Given w ∈ Z∗

N which is drawn from one
of the two distributions

dist0 = {y2 mod N | y
R← JN \QRN } , dist1 = {y2 mod N | y

R← JN } ,

B2,i constructs x = w2i−1
mod N which is used to feed the distinguisher D. When the

latter outputs a result, B2,i produces the same output. It is clear that, ifw ∈R dist0 (resp.
w ∈R dist1), then x ∈R Di (resp. x ∈R D′

i ). Hence, if D is a successful distinguisher,
so is B2,i . �

Claim 3. If k-QR holds, no probabilistic polynomial-time adversary can distinguish
the distributions of Dk−1 and Rk .

Proof (of Claim 3). Let D be an algorithm that can distinguish Dk−1 and Rk with
nonnegligible advantage. We build a k-QR distinguisher B3 out of D with the same
advantage.
Algorithm B3 takes as input N = pq with p ≡ 1 (mod 2k) as well as an element

w ∈ JN with the goal of deciding whether w ∈ QRN or w ∈ JN \QRN . To do this,
B3 simply defines x = w2k−1

mod N and feeds D with (x, k, N ). When D halts and
outputs b ∈ {0, 1}, B3 outputs the same bit.

It is easy to see that, if w ∈R QRN then w = y2 mod N for a random y ∈R Z∗
N , and

so x = (y2
k
mod N ) ∈R Rk —see Remark1. If w ∈R JN \QRN , we immediately have

x ∈R Dk−1. �

To conclude the proof of the theorem, we remark that, if a probabilistic polynomial-

time distinguisher B exists for the Gap 2k-Res assumption (i.e., if D0 � c≈ Rk), then

– either Dk−1 � c≈ Rk , contradicting k-QR (Claim 3); or

– there exists 1 ≤ i ≤ k − 1 such that D′
i � c≈ Di−1 or D′

i � c≈ Di . The above arguments
show that either situation would contradict the k-QR� assumption (Claim 1) or the
k-SJS� assumption (Claim 2)—or by Lemma1, the k-QR assumption or the k-SJS
assumption.

More precisely, to get the bound given in Theorem3, we consider B′
2,i the adversary

“B” defined in Lemma1when “A = B2,i”, andwe define the distinguisherD1 (resp.D2)

as follows: it picks (α, i)
R← P1 (resp. (α, i)

R← P2), where P1 and P2 are probability
distributions defined as:

Pr
(X,Y )

R←P1

[(X, Y ) = (α, i)] =

⎧
⎪⎨

⎪⎩

2
3k−1 if α = 1 and i ∈ {1, . . . , k − 1}
1

3k−1 if α = 2 and i ∈ {1, . . . , k − 1}
2

3k−1 if α = 3

and

Pr
(X,Y )

R←P2

[(X, Y ) = (α, i)] =
{

1
3k−3 if α = 1 and i ∈ {1, . . . , k − 1}
2

3k−3 if α = 2 and i ∈ {1, . . . , k − 1} .
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Then, D1 runs B1,i when α = 1, B′
2,i when α = 2, and B3 when α = 3, and outputs

what this latter adversary outputs. Similarly, D2 runs Bα,i , and outputs what this latter
adversary outputs.
Using Lemma1, we have:

AdvGap 2k -Res
B (κ) ≤

k−1∑

i=1

Advk-QR�

B1,i
(κ) +

k−1∑

i=1

Advk-SJS�

B2,i
(κ) + Advk-QR

B3
(κ)

≤
(

k−1∑

i=1

Advk-QR
B1,i

(κ) + 1

2

k−1∑

i=1

Advk-QR
B′
2,i

(κ) + Advk-QR
B3

(κ)

)

+
(
1

2

k−1∑

i=1

Advk-SJS
B1,i

(κ) +
k−1∑

i=1

Advk-SJS
B2,i

(κ)

)

= 3k − 1

2
Advk-QR

D1
(κ) + 3k − 3

2
Advk-SJS

D2
(κ).

In addition, we note that D1 and D2 have comparable running times to B. �
We remark that the assumption p ≡ 1 (mod 2k) is never directly used in the proof.

The assumption p ≡ 1 (mod 2k) is just needed for the correctness of our encryption
scheme. The security proof actually holds for any kind of modulus N for which theQR
and the SJS assumptions hold —the k-QR and the k-SJS assumptions are just theQR
and the SJS assumptions for moduli N = pq such that p ≡ 1 (mod 2k).

4.3. Semantic Security

It is not hard to see that the semantic security of the scheme is equivalent to the Gap
2k-Res assumption. FromTheorem3,we thus obtain the result announced in Theorem1.
Namely, for any IND-CPA adversaryA, there exist a k-QR distinguisherD1 and a k-SJS
distinguisher D2 such that

Advind-cpaA (κ) ≤ 3
2

(
(k − 1

3 ) · Advk-QR
D1

(κ) + (k − 1) · Advk-SJS
D2

(κ)
)

.

Proof (of Theorem 1) . The proof proceeds by simply changing the distribution of
the public key. Under the Gap 2k-Res assumption, instead of picking y uniformly
in JN \QRN , we can choose it in the subgroup of 2k-th residues without the adversary
noticing. However, in this case, the ciphertext carries no information about the message
and the IND-CPA security follows. �

Interestingly, the security proof implicitly shows that, like the original Goldwasser–
Micali system, our scheme is a lossy encryption scheme [9] (i.e., it admits an alternative
distribution of public keys for which encryptions statistically hide the plaintext), which
provides security guarantees against selective-opening attacks [15]. Moreover, for a
lossy key (y, N ), there exists an efficient algorithm that opens a given ciphertext c
to any arbitrary plaintext m (by using the factorization of N to find random coins that
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explain c as an encryption ofm). It implies that our scheme satisfies the simulation-based
definition [9] of selective-opening security.

5. Implementation and Performance

We tackle here some implementation aspects. We explain how to select the parame-
ters involved in the system setup and key generation. We present fast decryption algo-
rithms. Finally, we discuss the ciphertext expansion and give a comparison with previous
schemes.

5.1. Parameter Selection

The key generation (cf. Sect. 3.1) requires a prime p such that p ≡ 1 (mod 2k) for
some k ≥ 1 and a random element y ∈ JN \QRN , where N = pq. The condition

y ∈ JN \QRN is equivalent to
(

y
p

)
=
(

y
q

)
= −1. Since a random nonzero element

modulo p has a probability of exactly 1
2 of being a quadratic nonresidue modulo p

(and similarly modulo q), a suitable y is likely to be obtained after just a few trials.
Efficient algorithms for generating a prime p lying in a prescribed interval [pmin, pmax]
can be found in [28,29]. They can be adapted to accommodate the extra condition p ≡ 1
(mod 2k) without increasing the time complexity, as a random number congruent to 1
modulo 2k in [pmin, pmax] is prime with approximatively the same probability than a
random odd number in [pmin, pmax], thanks to Dirichlet’s theorem. We describe such a
variant below.
The goal is to produce a prime p = 1 + 2kr for some r ∈ [rmin, rmax], where

rmin = �(pmin−1)/2k� and rmax = �(pmax−1)/2k�. Let� = 3·5·7 · · · ≤ rmax−rmin+1
denote a product of small odd primes. The algorithmwill construct candidate primes that
are automatically co-prime to�. The first step is to generate a random unit υ ∈ Z∗

� (e.g.,

using the efficient algorithmpresented in [28, §2.2]). Defineϑ0 = −
(

1
2k +rmin

)
mod �.

A candidate p is then formed as

p ← 1 + 2k(rmin + ϑ) for someϑ ∈R [0, rmax − rmin] such that ϑ ≡ ϑ0 + υ (mod �)

and tested for primality. If candidate p is not prime, υ is updated as υ ← 2υ mod �

and the process is reiterated. Since � is odd, 2 ∈ Z∗
� and thus υ remains in Z∗

� after the
updating step.Moreover, reducing candidate p modulo�, we get p ≡ 1+2k(rmin+ϑ) ≡
1 + 2k(rmin + ϑ0 + υ) ≡ 2kυ (mod �) and thus p ∈ Z∗

� since υ ∈ Z∗
� and 2k ∈ Z∗

�.
Equivalently, p ∈ Z∗

� means that candidate p is such that gcd(p, pi ) = 1 for all primes
pi dividing � (and p is also odd by construction).
A powerful LLL-based technique due to Coppersmith bounds the size of k to at

most 1
2 log2 p bits as, otherwise, the factors of N would be revealed [13, Theorem 5].

Going beyond polynomial-time attacks, one should add an extra security margin to take
into account exhaustive searches [38]. RSA moduli being balanced (i.e., 1

2 log2 p =
1
4 log2 N ), we so end up with the upper bound
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k < 1
4 log2 N − κ

where κ is the security parameter.
In practice, this restriction on k is not a limitation because, as described in the next

section, long messages can be encrypted using the KEM/DEM paradigm. For example,
using ECRYPT 2 recommendations [17], for κ = 128 bits of security, a symmetric key
of k = 128 bits has to be used for the KEM/DEM paradigm, and a 3248-bit modulus
N has to be used to ensure factorization is hard. These parameters do not take into
account the tightness of the reduction. If we take it into account, when q ≡ 3 (mod 4),
according to Theorem2, a factor (k +1)/2 ≈ 64 = 26 is lost in the reduction. Assuming
that the best way to solve the quadratic residuosity consists in factorizing the modulus
N , a 3584-bit modulus has to be used, as this corresponds to (128 + 6) bits of security
for factorization, according to [17]. Note that the choice of parameters k = 128 and
|N |2 = 3584 satisfies the relation k < 1

4 log2 N − κ .

5.2. Optimized Decryption Algorithms

In its most basic version, the decryption requires O(k) full modular exponentiations in
Z∗

p in order to compute higher power residue symbols. This section shows that a suitable
preprocessing phase allows increasing the decryption speed.
The RSA modulus used in the proposed cryptosystem is of the form N = pq with

p ≡ 1 (mod 2k). Hence, we can write p = 2K p′ + 1 for some integer K ≥ k and
some odd integer p′. Now, given the public key pk = {N , y, k}, consider the ciphertext
c = ym x2

k
mod N of message m = ∑k−1

i=0 mi 2i with mi ∈ {0, 1}. If, for 1 ≤ j ≤ k,
we define � j = 2K− j p′ then

c� j ≡ (ym x2
k )� j ≡ ym � j x2

K+k− j p′ ≡ ym � j mod 2K p′ ≡ ym � j mod 2 j � j

≡ y� j (m mod 2 j ) ≡ y� j
(
m j−12 j−1+(m mod 2 j−1)

)

≡
(

y
p−1
2

)m j−1
y� j (m mod 2 j−1)

≡ (−1)m j−1 y� j (m mod 2 j−1) (mod p).

So, letting C = c2
K−k p′

mod p and Y = y2
K−k p′

mod p, the previous relation becomes
(

C
Y m mod 2 j−1

)2k− j

≡ (−1)m j−1 (mod p). Starting at j = 1 and iterating until j = k,

it yields a decryption algorithm producing one bit of plaintext m per iteration (i.e., bit
m j−1).

To further speed up the decryption, observing that Y = y2
K−k p′

mod p is independent
of the ciphertext, its value—or better its inverse— can be precomputed. The private key
now consists of the pair (p, D)where D = y−2K−k p′

mod p. As one bit of plaintext m is
correctly obtained per iteration, there is no need to fully recompute Dm mod 2 j−1

mod p
at iteration j . Rather, it can be obtained more efficiently from the value of the previous
iteration as

Dm mod 2 j−1
mod p =

{
Dm mod 2 j−2

mod p if m j−1 = 0

Dm mod 2 j−2
D2 j−1

mod p if m j−1 = 1
.
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We thus obtain:

Algorithm 1 Decryption algorithm

Input: Ciphertext c, private key (p, D) with D = y−(p−1)/2k
mod p, and public-key element k

Output: Plaintext m = (mk−1, . . . , m0)2

1: m ← 0; B ← 1; D ← D

2: C ← c(p−1)/2k
mod p

3: for j = 1 to k − 1 do

4: z ← C2k− j
mod p

5: if (z �= 1) then m ← m + B; C ← C · D mod p

6: B ← 2B; D ← D2 mod p
7: end for
8: if (C �= 1) then m ← m + B

9: return m

Variable m in the for-loop contains the lowest part of the plaintext m, and variable B
contains the successive powers of 2. Further, the for-loop is only performed until iteration
k − 1 to save a couple of operations. As a variant, we remark that D can be initialized
to y−(p−1)/2k

mod p (Line 1 in Algorithm1) instead of being explicitly included in the
private key.
As described, the for-loop in Algorithm1 on average involves

∑k−1
j=1(k − j) = (k−1)k

2

modular squarings for the successive evaluation of z, k−1
2 modular multiplications for

the evaluation of C, and (k − 1) modular squarings for updating D.

Remark 2. The decryption can even be made slightly faster. The condition z �= 1 is
equivalent to z ≡ −1 (mod p). Instead of iteratively evaluating z ← C2k− j

mod p
for 1 ≤ j ≤ k − 1, we can set z to C and successively square it, z ← z2 mod p,
until it becomes congruent to −1 (mod p). We then update C by multiplying it by the
corresponding power of D and redo the process untilC becomes equal to 1. On average,
this halves the number of squarings for the successive evaluations of z. Furthermore, the
modular squarings for updatingD can be saved by precomputing the different powers of
D. This saves (k − 1) modular squarings. The total number of operations in the for-loop
then boils down to (k−1)k

4 squarings plus k−1
2 multiplications (on average), modulo p.

5.3. Ciphertext Expansion

Hybrid encryption allows designing efficient asymmetric schemes, as suggested by
Shoup in the ISO 18033-2 standard for public-key encryption [27]. An asymmetric
cryptosystem is used to encrypt a secret key that is then used to encrypt the actual
message. This is the so-called KEM/DEM paradigm.
Table 1 compares the ciphertext expansion in the encryption of k-bit messages for dif-

ferent generalizedGoldwasser–Micali cryptosystems. Only cryptosystemswith a formal
security analysis are considered. Further, the value of k is assumed to be relatively small
(e.g., 128 or 256) as the “message” being encrypted is typically a symmetric key (e.g.,
a 128- or 256-bit AES key) in a KEM/DEM construction.
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Table 1. Ciphertext expansion in a typical encryption.

Encryption scheme Assumption Ciphertext size

Goldwasser–Micali [20] Quadratic residuosity (QR) k · log2 N

Benaloh–Fisher [11] Prime residuosity (PR)
⌈

k
log2 r

⌉
· log2 N

Naccache–Stern [39] Prime residuosity (PR) log2 N
Okamoto–Uchiyama [41] p-subgroup log2 N
Paillier [42] N -th residuosity 2 log2 N
This paper when q ≡ 1 (mod 4) Quadratic residuosity (k-QR) +

Squared Jacobi symbol (k-SJS)
log2 N

This paper when q ≡ 3 (mod 4) Quadratic residuosity (k-QR) log2 N

It appears that the Goldwasser–Micali cryptosystem has the highest ciphertext expan-
sion, but its semantic security relies on the standard quadratic residuosity assumption
(i.e., RSA moduli N = pq involves form-free primes). The ciphertext expansion of the
Benaloh–Fischer cryptosystem is similar to that of the Naccache–Stern cryptosystem
for small messages; i.e., when k ≤ log2 r . For larger messages, the Naccache–Stern
cryptosystem should be preferred. It also offers the further advantage of providing a
faster decryption procedure. The same is true for the Okamoto–Uchiyama cryptosystem
and the Paillier cryptosystem. These two latter cryptosystems are particularly suited
to encrypt very large messages (i.e., up to 1

2 log2 N bits for the Okamoto–Uchiyama
cryptosystem and up to log2 N bits for the Paillier cryptosystem).
The encryption scheme proposed in this paper has the same ciphertext expansion

as in the Naccache–Stern cryptosystem. Moreover, its decryption algorithm is fast (no
searches are needed), requires less memory, and the security relies on a quadratic resid-
uosity assumption (i.e., k-QR) when q ≡ 3 (mod 4). When q ≡ 1 (mod 4), it addi-
tionally requires the k-SJS assumption.

6. More Efficient Lossy Trapdoor Functions from the k-Quadratic Residuosity
Assumption

In this section, we show that our homomorphic cryptosystem allows constructing a lossy
trapdoor function based on the k-QR, k-SJS and DDH assumptions (or on the k-QR
and DDH assumptions) with much shorter outputs and keys than in previous QR-based
or DDH-based examples.

In comparison with the function of Hemenway and Ostrovsky [25], for example,
its output is k times smaller when working with a modulus N = pq with p ≡ 1
(mod 2k). Moreover, the size of the evaluation key is decreased by a factor of O(k2)
while increasing the lossiness by more than k bits. Finally, our inversion trapdoor has
constant size, whereas [25] uses a trapdoor of size O(n) to recover n-bit inputs. Our
function also compares favorably with theQR-based function of Freeman et al.[18,19],
which only loses a single bit.
In fact, by appropriately tuning our construction, we obtain the first lossy trapdoor

function with short outputs, description and trapdoor that losesmany input bits and relies
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on another assumption than Paillier’s. Among known lossy trapdoor functions based on
traditional number-theoretic assumptions [7,18,19,25,32,37,45], this appears as a rare
efficiency tradeoff. To the best of our knowledge, it has only been achieved under the
Composite Residuosity assumption [7,18,19] so far.
Interestingly, our LTDF provides similar efficiency improvements to the QR-based

deterministic encryption scheme of Brakerski and Segev [10], which also builds on the
Hemenway–Ostrovsky LTDF. Note that the scheme of [10] is important in the determin-
istic encryption literature since it is one of the only known schemes providing security
in the auxiliary input setting in the standard model.

6.1. Description and Security Analysis

We start by recalling the following definition.

Definition 7. ([45]) Let κ ∈ N be a security parameter and n : N → N, � : N → R

be nonnegative functions of κ . A collection of (n, �)-lossy trapdoor functions (LTDF)
is a tuple of efficient algorithms (InjGen,LossyGen,Eval, Invert) with the following
specifications.

– Sampling an injective function: Given a security parameter κ , the randomized al-
gorithm InjGen(1κ) outputs the index ek of an injective function of the family and
an inversion trapdoor t .

– Sampling a lossy function:Given a security parameter κ , the probabilistic algorithm
LossyGen(1κ) outputs the index ek of a lossy function.

– Evaluation: Given the index of a function ek —produced by either InjGen or
LossyGen— and an input x ∈ {0, 1}n , the evaluation algorithm Eval outputs
Fek(x) such that:

• If ek is an output of InjGen, then Fek(·) is an injective function.
• If ek was produced by LossyGen, then Fek(·) has image size 2n−�. In this case,
the value n − � is called residual leakage.

– Inversion: For any pair (ek, t) produced by InjGen and any input x ∈ {0, 1}n , the
inversion algorithm Invert returns F−1

ek (t, Fek(x)) = x .
– Security: The two ensembles {ek | (ek, t) ← InjGen(1κ)}κ∈N and {ek | ek ←
LossyGen(1κ)}κ∈N are computationally indistinguishable.

Our construction goes as follows.

Sampling an injective function. Given a security parameter κ , let �N :=�N (κ)

and k:=k(κ) be parameters determined by κ . Let also n:=n(κ) be the desired
input length. Algorithm InjGen defines m = n/k (we assume that k divides n for
simplicity) and conducts the following steps.

1. Generate an �N -bit RSA modulus N = pq such that p = 2K p′ + 1 and
q = 2Lq ′ + 1, for odd prime integers p, q, p′, q ′ and with K = k and

L ∈ {1, . . . , k}. Choose y
R← JN \QRN at random.
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2. For each i ∈ {1, . . . , m}, pick hi in the subgroup of 2k-residues, Rk =
{w2k

mod N | w ∈ Z∗
N } (of order p′q ′), by setting hi = gi

2k
mod N for

a randomly chosen gi
R← Z∗

N .

3. Choose r1, . . . , rm
R← Zp′q ′ and compute a matrix Z = (Zi, j

)
i, j∈{1,...,m} given

by

Z =
⎛

⎜
⎝

yz1,1 · h1
r1 mod N . . . . . . yz1,m · hm

r1 mod N
...

...

yzm,1 · h1
rm mod N . . . . . . yzm,m · hm

rm mod N

⎞

⎟
⎠ ,

where (zi, j )i, j∈{1,...,m} denotes the identity matrix.

The evaluation key is ek:=(N , (Zi, j )i, j∈{1,...,m}
)
, and the trapdoor is t :={p, y}.

Sampling a lossy function. The process followed by LossyGen is identical to
the above one, but the matrix (zi, j )i, j∈{1,...,m} is replaced by the all-zeroes m × m
matrix.
Evaluation. Given ek = (

N , (Zi, j )i, j∈{1,...,m}
)
, algorithm Eval parses the input

x ∈ {0, 1}n as a vector of k-bit blocks x̃ = (x1, . . . , xm), with xi ∈ Z2k for each i .
Then, it computes and returns ỹ = (y1, . . . , ym), with y j ∈ Z∗

N , where

ỹ =
( m∏

i=1

Zi,1
ximodN , . . . ,

m∏

i=1

Zi,m
ximodN

)

=
(

y
∑m

i=1 zi,1xi · h1

∑m
i=1 ri ximodN , . . . , y

∑m
i=1 zi,m xi · hm

∑m
i=1 ri ximodN

)
.

Inversion. Given t = {p, y} and ỹ = (y1, . . . , ym) ∈ Zm
N , Invert applies the

decryption algorithm of Sect. 3.2 to each y j , for j = 1 to m. Observe that when

(zi, j )i, j∈{1,...,m} is the identity matrix,
(

y j

p

)

2k
=
[(

y
p

)

2k

]x j
mods p. From the result-

ing vector of plaintexts x̃ = (x1, . . . , xm) ∈ Z2k
m , it recovers the input x ∈ {0, 1}n .

The Hemenway–Ostrovsky construction of [25] is slightly different in that, as in
the DDH-based construction of Peikert and Waters [45], the evaluation key includes
a vector of the form G = (gr1, . . . , grm )T , where g ∈ QRN , and the trapdoor is
t = (logg(h1), . . . , logg(hm)). In their scheme, the evaluation algorithm additionally
computes

∏m
i=1 (gri )xi , while the inversion algorithm does not use the factorization of

N but rather performs a coordinate-wise ElGamal decryption. Here, explicitly using the
factorization of N in the inversion algorithm makes it possible to process k-bit blocks at
once. In addition, it allows for a very short inversion trapdoor: The inversion algorithm
only needs y and the factorization of N .
Another important difference with the Hemenway–Ostrovsky construction is the fol-

lowing: In [25], as K = L = k = 1, y can be chosen as a primitive 2k-root of unity,
namely y = −1. In that case, indistinguishability between lossy keys and normal keys
can directly be proven under theQR assumption: Basically, hi is indistinguishable from
a random element in JN \QRN and so hi

r j masks yzi, j completely, if hi ′ ∈ QR for all
i ′ �= i and if r j is taken from Zφ(N ) (see [25] for details). However, when k ≥ 2, there
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does not seem to be a way to generate a 2k-root of unity without knowing the factoriza-
tion of N [23], and thus, we take instead a random element y ∈ JN \QRN . The previous
proof does not work anymore, and we need to rely on the DDH assumption in addition
to the Gap 2k-Res assumption, to prove indistinguishability between lossy keys and
normal keys.
We first recall the DDH assumption before giving the security theorem for our new

construction.

Definition 8. (Decision Diffie–Hellman, DDH) Given a security parameter κ , let G =
〈g〉 be a (multiplicatively written) group of order n. TheDecision Diffie–Hellman (DDH)
assumption for G asserts that the function AdvDDHD (κ), defined as the distance

∣
∣
∣Pr[D(g, ga, gb, gab) = 1 | a, b

R← Zn] − Pr[D(g, ga, gb, gc) = 1 | a, b, c
R← Zn]

∣
∣
∣

is negligible for any probabilistic polynomial-time distinguisherD; the probabilities are
taken over the experiment of selecting at random a generator g of G and choosing at
random a ∈ Zn , b ∈ Zn and c ∈ Zn .

Theorem 4. Let �(κ) = n(κ) − log2(p′q ′). The above construction is a (n(κ), �(κ)-
LTDF if the Gap 2k-Res assumption holds and if the DDH assumption holds in the
subgroup Rk of 2k-th residues.

We recall that N = pq, with p = 2K p′ + 1 and q = 2Lq ′ + 1. Therefore, we have:

n(κ) − log2(N/2K+L) < �(κ) < n(κ) − log2(N/2K+L) + 1.

Proof (of Theorem 4). We first prove that lossy functions are indistinguishable from
injective functions. To this end, we consider a sequence of hybrid experiments. We first
define an experiment Exp0 which is an experiment where the key generation algorithm
outputs the description of an injective function with the difference that y is chosen as a

2k-th residue instead of being drawn as y
R← JN \QRN . Clearly, under theGap 2k-Res

assumption, Exp0 is computationally indistinguishable from an experiment where the
adversary is given the description of an injective function. Note that although p′q ′ is
used to generate the values r j , using the approximate value N/2K+L instead of p′q ′ is
statistically indistinguishable. Thus, knowing the factorization of N is not necessary in
these experiments, and the Gap 2k-Res assumption can be applied.
Next, for each i� ∈ {1, . . . , m} we define experiment Expi� as an experiment where

y ∈R Rk and the key generation algorithm outputs a matrix (Zi, j )i, j which encrypts a
hybrid matrix (zi, j )i, j whose first i� columns all contain zeroes, whereas the last m − i�

columns are those of the m × m identity matrix.
Claim. If the DDH assumption holds in the subgroup Rk of 2k-th residues, for each

i� ∈ {1, . . . , m}, experiment Expi� is computationally indistinguishable from Experi-
ment Expi�−1. �
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Proof. The claim is proved in the same way as a similar claim about the DDH-based
LTDF of Peikert and Waters [45]. Since y lives in the cyclic subgroup Rk of 2k-th
residues, we are free to invoke the DDH assumption in Rk . Concretely, given a DDH

challenge (g, ga, gb, γ ) ∈ (Rk)
4, the goal is to distinguish if γ = gab or γ

R← Rk . Let
B be an adversary that can tell apart Expi� from Expi�−1 with advantage

AdvExp(i�,i�−1)
B (κ):=

∣
∣
∣Pr
[B(y, (Zi, j )i, j

) = 1 | (y, (Zi, j )i, j )
R← Expi�

]

− Pr
[B(y, (Zi, j )i, j

) = 1 | (y, (Zi, j )i, j )
R← Expi�−1

]∣∣
∣.

Our distinguisherD is defined as follows. The public key is generated by setting hi� = ga

and h j = gα j , with α j
R← Zp′q ′ for each j �= i�. The evaluation key is generated by

setting the entry (i�, i�) of the matrix as Zi�,i� = yβγ for a random bit β
R← {0, 1},

while the rest of the i�-th row is obtained by setting Zi�, j = (gb)α j . The rest of rows of
matrix (Zi, j )i, j , different from the i�-th one, are generated by choosing the exponents
faithfully, namely for each i �= i�: Zi, j = h j

ri for each j �= i , Z j, j = h j
r j for each

j < i� and Z j, j = y · h j
r j for each j > i�, with r j

R← Zp′q ′ for each j �= i�. Element
y ∈ Rk and matrix (Zi, j )i, j are given to B, which returns its guess β ′ on the running
experiment. Distinguisher D outputs 1 if β ′ = β and 0 otherwise.
Suppose first that γ = gab. Then, it is clear that the evaluation key given

to B is distributed as in Experiment Expi� when β = 0 and as in Experiment
Expi�−1 when β = 1. Hence, we have Pr[D(g, ga, gb, γ ) = 1 | γ = gab] =
Pr[β ′ = β | γ = gab] = 1

2 Pr
[B(y, (Zi, j )i, j

) = 0 | (y, (Zi, j )i, j )
R← Expi�

] +
1
2 Pr
[B(y, (Zi, j )i, j

) = 1 | (y, (Zi, j )i, j )
R← Expi�−1

] = 1
2

(
1 − Pr

[B(y, (Zi, j )i, j
) =

1 | (y, (Zi, j )i, j )
R← Expi�

])+ 1
2 Pr
[B(y, (Zi, j )i, j

) = 1 | (y, (Zi, j )i, j )
R← Expi�−1

] =
1
2 ±AdvExp(i�,i�−1)

B (κ). If now γ
R← Rk thenExpi� andExpi�−1 are equally distributed.

This implies that Pr[D(g, ga, gb, γ ) = 1 | γ
R← Rk] = Pr[β ′ = β | γ

R← Rk] = 1/2.
Consequently, we get

∣
∣Pr[D(g, ga, gb, γ ) = 1 | γ = gab] − Pr[D(g, ga, gb, γ ) = 1 |

γ
R← Rk]

∣
∣ = AdvExp(i�,i�−1)

B (κ), which should be negligible under the DDH assump-
tion. �

The proof now follows by remarking that, in lossy functions, the output is entirely
determined by

∑m
i=1 ri xi mod p′q ′, so that the image size is smaller than p′q ′. The

residual leakage is thus at most log2(p′q ′) bits.
Combining this result with Theorem3, the security of the new trapdoor function relies

on the DDH assumption in the subgroup of 2k-th residues and additionally either the
combination of the k-QR and k-SJS assumptions (when L > 1) or the k-QR assumption
alone (when L = 1).

It is worth noting that, with N = pq such that p ≡ 1 (mod 2k), a side effect of
working in the subgroup Rk (of order p′q ′) is an improved lossiness. Indeed, we lose
n − log2(p′q ′) bits in comparison with n − log2 φ(N ) in [25]. Since φ(N ) = 2K+L p′q ′,
this means we lose K +L more bits than by using the construction in [25], where K = k,
1 ≤ L ≤ k.
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The most interesting instantiations are:

– K = L = k: in which case we lose 2k more bits than [25] and the construction is
secure under k-QR, k-SJS, and DDH in Rk ;

– K = k and L = 1: in which case we lose only k more bits than [25], but the k-SJS
assumption is no more required.

6.2. An All-But-One Trapdoor Function

Using the techniques of Peikert and Waters [45], it is easy to construct an equally
efficient all-but-one trapdoor function providing the same amount of lossiness as our
lossy trapdoor function, under the same assumptions. A difference will be that, in order
to enable inversion, the resulting all-but-one function will handle k/2 bits (instead of k)
in each chunk.
First we recall the definition of an all-but-one trapdoor function. Let κ ∈ N be a

security parameter and n : N → N, � : N → R be nonnegative functions of κ . A
collection of (n, �)-all-but-one trapdoor functions (ABO-TDF) is a tuple of efficient
algorithms (BranchGen,ABOGen,Eval, Invert) with the following specifications.

– Sampling a branch: Given a security parameter κ , BranchGen is a randomized
algorithm that outputs a branch b ∈ {0, 1}∗ of appropriate length.

– Sampling a function: ABOGen is a probabilistic algorithm that takes as input a
security parameter κ and a branch b� produced by BranchGen. It outputs the
description ek of a function and a trapdoor t .

– Evaluation: For any branch b� produced by BranchGen, any pair (ek, t) produced
by ABOGen(1κ , b�), any branch b and any input x ∈ {0, 1}n , the evaluation algo-
rithm Eval outputs Fb,ek(x) such that:

• If b �= b�, then Fb,ek(·) is an injective function;
• If b = b�, then Fb�,ek(·) has image size 2n−�. In this case, the value n − � is
called residual leakage.

– Inversion: For any b� produced by BranchGen and any pair (ek, t) produced by
ABOGen(1κ , b�), any branch b �= b� and any input x ∈ {0, 1}n , the inversion
algorithm Invert returns F−1

b,ek(t, Fb,ek(x)) = x .
– Security: For any distinct b, b′ ∈ {0, 1}∗ produced by BranchGen, the ensembles

{ek | (ek, t) ← ABOGen(1κ , b)}κ∈N and {ek | (ek, t) ← ABOGen(1κ , b′)}κ∈N

are computationally indistinguishable.

Our ABO-TDF is described below. A difference with the Paillier-based construction
of [18] is that, when inverting the function, we must pay attention to the fact that the
output of the functionmay contain encryptions of values which are not invertible modulo
2k . In order to avoid the need to invert in Z2k , we perform the division over the integers.
To this end, we have to adjust the parameter k so as to make sure that, for any branches
b, b� and any input block x , the product (b − b�) · x will be smaller than 2k .

Sampling a branch. Given a security parameter κ ∈ N and a parameter λ:=λ(κ)

determined by κ , the algorithm chooses b
R← {0, 1}λ.
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Sampling a function. The function sampling algorithm takes as input a security
parameter κ , parameters �:=�N (κ) and λ:=λ(κ) that are determined by κ , the
desired input length n:=n(κ), and a branch b� ∈ {0, 1}λ. It sets k = 2λ and defines
m = n/λ (we assume that λ divides n for simplicity) and does the following.

1. Generate an �N -bit RSA modulus N = pq such that p = 2K p′ + 1 and q =
2Lq ′ +1, for odd prime integers p, q, p′, q ′, K = k, and some L ∈ {1, . . . , k}.
Choose y

R← JN \QRN at random.
2. For each i ∈ {1, . . . , m}, pick hi in the subgroup Rk (of order p′q ′), by setting

hi = gi
2k

mod N for a randomly chosen gi
R← Z∗

N .

3. Choose r1, . . . , rm
R← Zp′q ′ and compute a matrix

Z = (Zi, j
)

i, j∈{1,...,m}

=
⎛

⎜
⎝

y−z1,1b� · h1
r1 mod N . . . . . . yz1,m · hm

r1 mod N
...

...

yzm,1 · h1
rm mod N . . . . . . y−zm,m b� · hm

rm mod N

⎞

⎟
⎠ ,

where
(
zi, j
)

i, j∈{1,...,m} is the identity matrix; i.e., Zi,i = y−b�
hi

ri mod N and
Zi, j = h j

ri mod N if j �= i .

The evaluation key of the ABO function is ek:=(N , (Zi, j )i, j∈{1,...,m}, y
)
, and the

trapdoor is t :=p.
Evaluation. In order to evaluate the function on a branch b ∈ {0, 1}λ for the input
x ∈ {0, 1}n using the evaluation key ek = (N , (Zi, j )i, j∈{1,...,m}, y

)
, algorithmEval

parses x ∈ {0, 1}n as a vector of λ-bit blocks x̃ = (x1, . . . , xm), with xi ∈ Z2λ for
each i . Then, it defines the matrix

Zb = (Zb
i, j )i, j∈{1,...,m}

=

⎛

⎜
⎜
⎜
⎝

yb · Z1,1 mod N Z1,2 . . . Z1,m

Z2,1 yb · Z2,2 mod N . . . Z2,m
...

. . .
...

Zm,1 . . . . . . yb · Zm,m mod N

⎞

⎟
⎟
⎟
⎠

,

i.e., Zb
i, j = Zi, j if i �= j and Zb

i,i = yb · Zi,i mod N for each i, j ∈ {1, . . . , m}.
Then, it computes and returns

ỹ =
( m∏

i=1

(Zb
i,1)

xi mod N , . . . ,

m∏

i=1

(Zb
i,m)xi mod N

)

=
(

y(b−b�)x1 · h1

∑m
i=1 ri xi mod N , . . . , y(b−b�)xm · hm

∑m
i=1 ri xi mod N

)
.

Inversion. Given a description ek = (N , (Zi, j )i, j∈{1,...,m}, y
)
of the function, the

trapdoor t = p and the output ỹ = (y1, . . . , ym) ∈ Zm
N , the function can be inverted

for the branch b �= b� by proceeding as follows.
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1. Define the vector (w1, . . . , wm) ∈ Zm
N as (w1, . . . , wm) = (y1, . . . , ym) if

b > b� (when the bitstrings b and b� are interpreted as natural integers) and
(w1, . . . , wm) = (y1−1 mod N , . . . , ym

−1 mod N ) if b < b�.
2. For i = 1 to m, apply the decryption algorithm of Sect. 3.2 to wi .
3. From the vector of plaintexts x̃ = (x1, . . . , xm) ∈ Zm

2λ obtained at Step 2,
define x̃ ′ = (x ′

1, . . . , x ′
m) ∈ Zm

2λ such that x ′
i = xi/|b − b�| (the division being

performed over Z), where |b − b�| = b − b� if b > b� and b� − b otherwise.
4. From x̃ ′ = (x ′

1, . . . , x ′
m), recover the original input x ∈ {0, 1}n by concatenat-

ing the binary representations the coordinates of x̃ ′.
The correctness of the inversion algorithm stems from the fact that, since we have

xi , b, b� < 2λ, it holds that |b − b�| · xi < 22λ = 2k for each i ∈ {1, . . . , m}, so that x ′
i

can be computed over the integers at step 3 of the inversion algorithm.
It is easy to prove that the description of the function computationally hides the

underlying lossy branch if the k-QR and k-SJS assumptions hold (when L > 1) or if
the k-QR assumption holds (when L = 1), and if the DDH assumption holds in the
subgroup Rk (of order p′q ′). The proof is essentially identical to the proof of Theorem4
and is omitted.

6.3. Application: Efficient CCA-Secure Encryption

By combining the lossy and all-but-one trapdoor function, a CCA-secure encryption
scheme can be obtained using the construction of [45]. We argue now that m = O(1)
suffices for this purpose. Recall that the scheme of [45] combines a pairwise independent
hash function H : {0, 1}n → {0, 1}τ , an (n, �)-lossy function and an (n, �′)-all-but-one
function such that � + �′ ≥ n + ν and τ ≥ ν − 2 log2(1/ε), for some ν ∈ ω(log n)

and where ε is the statistical distance in the modified Leftover Hash Lemma used in
[16]. If we choose ε ≈ 2−κ and τ = k in order to encrypt k-bit messages, we can set
ν = k + 2κ . Setting � = �′ = n − log2(p′q ′), the constraint � + �′ ≥ n + ν translates
into n − 2 log2(p′q ′) ≥ ν.
Since q = 2Lq ′ + 1 and p = 2k p′ + 1 in our trapdoor functions, if we set k =

1
4 log2 N−κ (cf. Sect. 5.1),wehave log2(p′q ′) = log2 φ(N )−k−L ≈ 4(k+κ)−k−L =
3k + 4κ − L , which yields n ≥ 4k + 6κ − L . If k > κ , it is sufficient to set n ≥ 10k. If
we take into account the fact that our all-but-one function processes blocks of k/2 bits,
we find that m = 2n/k = 20 suffices here, even for L = 1. For larger values of L , an
even smaller m would suffice.
As it turns out, when the Peikert–Waters construction [45, Sect. 4.3] of CCA-secure

encryption is instantiated with our lossy and all-but-one trapdoor functions, it only
requires a constant number of exponentiations while retaining constant-size public keys
and ciphertexts.
With the exception of [24] (which relies on a weaker assumption), to the best of our

knowledge, it yields the only knownCCA-secureQR-based cryptosystemcombining the
aforementioned efficiency properties. Up to now, the most efficient chosen-ciphertext-
secure cryptosystem strictly based on theQR assumption was the one of Kiltz et al.[33],
where O(κ) exponentiations are needed to encrypt and the public key contains O(κ)

group elements. On the other hand, our construction requires more specific moduli than
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[33] and additionally appeals to the DDH assumption (and the k-SJS assumption, as
well, if L > 1).

7. Conclusion

This paper introduced a new generalization of the Goldwasser–Micali cryptosystem.
The so-obtained cryptosystems are shown to be secure under well-defined assumptions.
Further, they enjoy a number of useful features including fast decryption, optimal ci-
phertext expansion, and homomorphic property.We believe that our proposal is the most
natural yet efficient generalization of the Goldwasser–Micali cryptosystem. It keeps the
nice attributes and properties of the original scheme while improving the overall perfor-
mance.
When applied to the Peikert–Waters framework for building lossy trapdoor functions,

it yields a practical construction based on quadratic residuosity related andDDH assump-
tions, with companion deterministic encryption scheme and CCA-secure cryptosystem.
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Appendix: Proof of Theorem2

As in the proof of Theorem3, for 0 ≤ i ≤ k −1, we consider the subsets Di of JN given
by

Di = {y2
i
mod N | y ∈ JN \QRN

}

and define the subgroup of 2k-th residues, Rk = {y2
k
mod N | y ∈ Z∗

N

}
.

We start with a lemma that is useful to tighten the bound of Theorem3 in the case q ≡ 3
(mod 4).

Lemma 2. Let N = pq be the product of two large primes p and q where p ≡ 1
(mod 2k) for some k ≥ 1 and q ≡ 3 (mod 4). Then, for any w ∈ QRN , letting
W :=w2i−1

mod N for a given 1 ≤ i ≤ k, we have W ∈ Rk ∪ ⋃k−1
j=i D j . Further,

if w is uniform over QRN , we have W uniform over D j with probability 1
2 j−i+1 for

i ≤ j ≤ k − 1 and W uniform over Rk with probability 1
2k−i .

Proof. We assume that w is uniform over QRN .
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The case i = k (which includes the case k = 1) yields W = w2k−1
with w ∈ QRN . It is

then readily verified that W is uniform over Rk with probability 1.
We henceforth suppose i ≤ k−1 and k ≥ 2. In particular, this implies p ≡ 1 (mod 4)

and thus
(−1

p

)
= 1. Denoting by (ŵp, ŵq) the CRT representation of a square root ŵ of

w (i.e., ŵp = ŵ mod p and ŵq = w mod q), the four square roots of w modulo N are

given by (±ŵp,±ŵq). Since
(−1

q

)
= −1, we can assume w.l.o.g. that

(
ŵq

q

)
=
(

ŵp

p

)
, or

equivalently that ŵ ∈ JN . If ŵ ∈ QRN the process can be reiterated, and so on. More
generally, we define t as the largest integer in {1, . . . , k − i} such that w = ŵ2t

for some
ŵ ∈ JN . We can so write W = ŵ2t+i−1

for some ŵ ∈ JN . It is worth noting that since t is
the largest integer in the set {1, . . . , k − i} we can only have ŵ ∈ QRN when t = k − i .
Defining j = t + i −1 (observe that i ≤ j ≤ k −1), we therefore obtain W = ŵ2 j ∈ D j

if ŵ /∈ QRN (i.e., ŵ ∈ JN \QRN ) and W = ŵ2k−1 ∈ Rk if ŵ ∈ QRN . The probability
that W ∈ D j (for i ≤ j ≤ k − 1) is Pr[w = ŵ2t

and ŵ /∈ QRN ] = 1
2t = 1

2 j−i+1 and the

probability that W ∈ Rk is Pr[W /∈⋃k−1
j=i D j ] = 1 −∑k−1

j=i
1

2 j−i+1 = 1
2k−i . �

Theorem 5. For RSA moduli N = pq with p ≡ 1 (mod 2k) and q ≡ 3 (mod 4), the
Gap 2k-Residuosity Gap 2k-Res assumption holds if the k-QR assumption holds. More
precisely, for any probabilistic polynomial-time distinguisher B against the latter, there
exists a k-QR distinguisher D with comparable running time and for which

AdvGap 2k -Res
B (κ) ≤ 1

2 (k + 1) · Advk-QR
D (κ).

Proof. Let B be an adversary against Gap 2k-Res. We write:

εi =
{
Pr[B(x, N ) = 1 | x

R← Di ] for i ∈ {0, . . . , k − 1}
Pr[B(x, N ) = 1 | x

R← Rk] for i = k
.

The advantage of B against Gap 2k-Res is given by AdvGap 2k -Res
B (κ) = |ε0 − εk |.

We first construct k distinguishers B1, . . . ,Bk against k-QR as follows. Bi takes as
input an RSA modulus N = pq, with p ≡ 1 (mod 2k) and q ≡ 3 (mod 4), and an
elementw ∈ JN . Its task is to decidewhetherw is uniformoverJN \QRN or uniformover

QRN . To this end,Bi chooses a random element z
R← Z∗

N , defines x = z2
i
w2i−1

mod N ,
and feeds B with (x, N ). It outputs the answer returned by B. There are two cases:
– Ifw is uniform over JN \QRN , we clearly have that x is uniform over Di−1. There-
fore, in that case, Bi outputs 1 with probability εi−1.

– If w is uniform over QRN , B outputs 1 with probability
∑k

j=i
1

2 j−i+1 ε j + 1
2k−i εk ,

according to Lemma2.

Therefore, the (signed) advantage of Bi in solving k-QR is

ai = εi−1 −
⎛

⎝
k∑

j=i

1

2 j−i+1 ε j + 1

2k−i
εk

⎞

⎠ = εi−1 −
k∑

j=i

2i−1β jε j
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with β j = 1
2 j for j ∈ {1, . . . , k − 1} and βk = 1

2k−1 .
Consider the following probability distribution P over {1, . . . , k}:

Pr
X

R←P
[X = i] = pi :=

{
2

k+1 if i = 1
1

k+1 if i ≥ 2
.

We now define an adversary D against k-QR as follows: D chooses a random element

i
R← P and feeds Bi with its k-QR challenge. The advantage of D is equal to

Advk-QR
D (κ) =

∣
∣
∣
∣
∣

k∑

i=1

pi ai

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

k∑

i=1

piεi−1 −
k∑

i=1

pi

k∑

j=i

2i−1β jε j

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

k−1∑

j=0

p j+1ε j −
k∑

j=1

j∑

i=1

2i−1 piβ jε j

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣
p1ε0 +

k−1∑

j=1

(

p j+1 −
j∑

i=1

2i−1 piβ j

)

ε j −
k∑

i=1

2i−1 piβkεk

∣
∣
∣
∣
∣
∣
.

For j ∈ {1, . . . , k − 1}, we have β j = 1
2 j and thus

j∑

i=1

2i−1 piβ j =
(

p1 +
j∑

i=2

2i−1 pi

)

β j =
(

2 +
j∑

i=2

2i−1
)

β j

k + 1

= 2 j β j

k + 1
= 1

k + 1
= p j+1.

Likewise, since βk = 1
2k−1 , we have

k∑

i=1

2i−1 piβk =
(

p1 +
k∑

i=2

2i−1 pi

)

βk = 2k βk

k + 1
= 2

k + 1
.

Therefore, we get that the advantage of D satisfies

Advk-QR
D (κ) =

∣
∣
∣
∣

2

k + 1
ε0 + 0 − 2

k + 1
εk

∣
∣
∣
∣ =

2

k + 1
AdvGap 2k -Res

B (κ).

This concludes the proof by further noting that the running time of D is comparable to
that of B. �

Theorem2 is now an application of Theorem5, in a way similar to what was done in
Sect. 4.3 for the general case.
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